Rochon, Dominic
Professeur
Chef de la section : de mathématiques et de statistiques 3066 Ringuet
819 376-5011, poste 3805
Formation :
Doctorat en mathématiques fondamentales, Ph.D. / Université de Montréal, Montréal, 2001. Thèse : Dynamique bicomplexe et théorème de Bloch pour fonctions hyperholomorphes. Maîtrise en mathématiques fondamentales, M.A. / Université de Montréal, Montréal, 1997. Mémoire : Sur une généralisation des nombres complexes: les tétranombres. Baccalauréat en mathématiques fondamentales / Université de Montréal, Montréal, 1996
Intérêts de recherche :
Fractales et IA, Analyse complexe, Nombres hypercomplexes, Nombres bicomplexes, Dynamique multicomplexe, Mandelbulb, Solides de Platon, Art Fractal Quelques communications et publications :
[1] D. Rochon, A Generalized Mandelbrot Set for Bicomplex Numbers, Fractals, 8, No. 4, 355-368 (2000). [2] D. Rochon, A Bloch Constant for Hyperholomorphic Functions, Complex Variables, 44, 85-101 (2001). [3] D. Rochon, On a Generalized Fatou-Julia Theorem, Fractals, 11, No. 3, 213-219 (2003). [4] D. Rochon, A Bicomplex Riemann Zeta Function, Tokyo Journal of Mathematics, 27, No. 2, 357-369 (2004). [5] D. Rochon & S. Tremblay, Bicomplex Quantum Mechanics I: The Generalized Schrödinger Equation, Advances in applied Clifford algebras, 14, No. 2, 231-248 (2004). [6] D. Rochon & M. Shapiro, On algebraic properties of bicomplex and hyperbolic numbers, Anal. Univ. Oradea, fasc. math., vol. 11 , 71-110 (2004). [7] É. Martineau & D. Rochon, On a Bicomplex Distance Estimation for the Tetrabrot, International Journal of Bifurcation and Chaos, 15, No. 9, 3039-3050 (2005). [8] D. Rochon & S. Tremblay, Bicomplex Quantum Mechanics II: The Hilbert Space, Advances in applied Clifford algebras, 16, No. 2, 135-157 (2006). [9] D. Rochon, On a relation of bicomplex pseudoanalytic function theory to the complexified stationary Schrödinger equation, Complex Variables, 53, No. 6, 501-521 (2008). [10] V. V. Kravchenko, D. Rochon & S. Tremblay, On the Klein-Gordon equation and hyperbolic pseudoanalytic function theory, J. Phys. A: Math. Theor., 41, No. 6, 1-18 (2008). [11] K.S. Charak, D. Rochon & N. Sharma, Normal Families of Bicomplex Holomorphic Functions, Fractals, 17, No. 3, 257-268 (2009). [12] V. Garant-Pelletier & D. Rochon, On a generalized Fatou-Julia theorem in multicomplex spaces, Fractals, 17, No. 3, 241-255 (2009). [13] R. Gervais Lavoie, L. Marchildon & D. Rochon, The Bicomplex Quantum Harmonic Oscillator, Nuovo Cimento B, 125, No. 10, 1173-1192 (2010). [14] R. Gervais Lavoie, L. Marchildon & D. Rochon, Infinite-Dimensional Bicomplex Hilbert Spaces, Ann. Funct. Anal, 1, No. 2, 75-91 (2010). [15] R. Gervais Lavoie, L. Marchildon & D. Rochon, Hilbert Space of the Bicomplex Quantum Harmonic Oscillator, AIP Conference Proceedings, 1327, 148-157 (2011). [16] R. Gervais Lavoie, L. Marchildon & D. Rochon, Finite-Dimensional Bicomplex Hilbert Spaces, Advances in applied Clifford algebras, 21, No. 3, 561-581 (2011). [17] Rajeev Kumar, Romesh Kumar & D. Rochon, The Fundamental Theorems in the framework of Bicomplex Topological Modules, arXiv: 1109.3424 (2011). [18] K.S. Charak, D. Rochon & N. Sharma, Normal Families of Bicomplex Meromorphic Functions, Annales Polonici Mathematici, 103, No. 3, 303-317 (2012). [19] D. Rochon, Ravinder Kumar & K.S. Charak, Bicomplex Riesz-Fischer Theorem, GJSFR, 13-F, No. 1, 67-77 (2013). [20] K.S. Charak, Ravinder Kumar & D. Rochon, Infinite Dimensional Bicomplex Spectral Decomposition Theorem, Advances in applied Clifford algebras, 23, No. 3, 593-605 (2013). [21] J. Mathieu, L. Marchildon & D. Rochon, The Bicomplex Quantum Coulomb Potential Problem, Canadian Journal of Physics, 91, 1193-1100 (2013). [22] C. Matteau & D. Rochon, The Inverse Iteration Method for Julia Sets in the 3-Dimensional Space, Chaos, Solitons & Fractals, 75, 272-280 (2015). [23] P.-O. Parisé & D. Rochon, A Study of Dynamics of the Tricomplex Polynomial $\eta^p+c$, Nonlinear Dynamics, 82, 157-171 (2015). [24] P.-O. Parisé, T. Ransford & D. Rochon, Tricomplex Dynamical Systems Generated by Polynomials of Even Degree, Chaotic Modeling and Simulation (CMSIM), 1, 37-48 (2017). [25] P.-O. Parisé & D. Rochon, Tricomplex Dynamical Systems Generated by Polynomials of Odd Degree, Fractals, 25, No. 3, 1-11 (2017). [26] G. Brouillette, P.-O. Parisé & D. Rochon, Tricomplex Distance Estimation for Filled-in Julia Sets and Multibrot Sets, International Journal of Bifurcation and Chaos, 29, No. 6 (2019). [27] G. Brouillette & D. Rochon, Characterization of the Principal 3D Slices Related to the Multicomplex Mandelbrot Set, Advances in applied Clifford algebras, 29, No. 39 (2019). [28] A. Vallières & D. Rochon, Relationship between the Mandelbrot Algorithm and the Platonic Solids, Mathematics, 10, No. 482 (2022). [29] V. Boily & D. Rochon, On the Algebraic Foundation of the Mandelbulb, arXiv: 2206.06332 (2022). Prix et distinctions :
|
Département de mathématiques et d'informatique
Pavillon : Ringuet
Local : 3074
Téléphone : 819 376-5011 poste 3802
Courriel : dir.dep.dmi@uqtr.ca
Site web : www.uqtr.ca/dmi
Site web réalisé par Daniel St-Yves - 2014
Technologie Chopin