
Résumé – L’ordonnancement à court terme des opérations d’une chaîne d'approvisionnement dans l’industrie de phosphate est un 

problème complexe avec de nombreuses contraintes spécifiques à l'industrie. Nous nous sommes intéressés à la résolution d’un 

problème d’ordonnancement intégré de production (stations de lavage) et de transport via un pipeline multiproduits. Dans cet article, 

une approche basée sur un modèle de programmation linéaire mixte en nombres entiers avec une formulation en temps continu est 

proposée. L'objectif est de déterminer un ordonnancement de la chaîne d'approvisionnement permettant de maximiser le taux 

d’utilisation du pipeline, tout en respectant les contraintes liées à la production, au transport, à la capacité de stockage, et à la 

satisfaction des demandes de clients. Un groupe d’instances à court terme ont été générées à partir des données réelles de la chaîne 

d'approvisionnement de l’OCP et les résultats obtenus montrent que le modèle est capable de fournir des solutions optimales de ces 

instances dans un délai raisonnable. 

Abstract –Short-term detailed multiproduct phosphate production, pipeline transportation, and storage management are complex 

problems with many industry-specific constraints. We are interested in solving an integrated production (washing stations) and 

multiproduct pipeline transportation scheduling problem in the context of (phosphate) mining industry. In this paper, an approach 

based on a mixed-integer linear programming model with a continuous-time formulation is proposed. The objective is to determine 

a scheduling of the supply chain allowing to maximize the utilization rate of the pipeline, while respecting the constraints related 

to production, transport, storage capacity, and satisfaction of customers' demand requests. A group of short-term instances were 

generated using the real dataset of OCP’s supply chain and the obtained results show that the model is able to provide efficiently 

optimal solutions for these instances.   
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1 INTRODUCTION 

In this paper, we propose a mixed-integer linear programming 

(MILP) solution approach for the integrated multiproduct 

production and pipeline transportation scheduling problem in 

the context of the phosphate industry. Phosphate ore is crushed 

and washed at the Washing Stations (production units) to create 

a mixture of ore and water (slurry) before to be transported to 

clients through the pipeline. Intermediate limited capacity 

storage tanks are used. The slurry pipeline is a cost-effective and 

reliable option for transporting large quantities of minerals over 

long distances. By utilizing pipelines, it is possible to maintain 

a continuous supply of slurry without the need for oversized 

storage units, as is required for traditional transportation modes 

such as rail and truck. With the use of multiproduct limited 

storage capacity tanks, the scheduling problem becomes more 

challenging.  

This study aims to determine the duration of every time interval, 

the production decisions, and the charging and discharging 

decisions at each time interval, to schedule the transportation of 

batches through the pipeline. According to the Bone Phosphate 

Lime (BPL) component, phosphate slurries are classified into 

different qualities, and each of them are considered as different 

products. A batch of phosphate slurry is composed of a single 

product with lower and upper volume constraints. A batch of 

water is placed between two batches of different products to 

prevent contamination and enable the identification of batch 

edges at the end of the pipeline. Additionally, the slurry pipeline 

is required to be injected with either a product or water at all 

times, meaning no stoppages are allowed. Washing stations are 

used to produce phosphate slurry and are characterized by a 

minimum production quantity to be respected and a setup 

duration in case of a product change. 
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of a supply chain in the phosphate industry  



Considering a set of products, a dominant product 𝑃1 ensures 

the continuous functioning of the chemical processing units. 𝑃1 

is discharged into a tank with a maximum autonomy of four 

hours in cases of low demand, requiring careful management of 

storage to accurately represent the real-world situation. For the 

other products, a tank is shared between them for intermediate 

storage at the Head station and the Terminal station. The tank 

can contain only one product at a time. The change of stored 

product in the tanks requires additional constraints to avoid 

contamination. The products are filtered to reduce water content 

and consumed before the end of the scheduling horizon. 

The scheduling horizon is divided into a predefined number of 

time intervals. A mixed-integer linear programming model is 

proposed with the goal of maximizing the use of the slurry 

pipeline to transport products. The initial storage levels, initial 

stored products in tanks, and batches contained in the pipeline 

at the start of the scheduling horizon are considered in the 

model. 

The rest of the paper is organized as follows. The next section 

defines the problem under study and assumptions. Section 3 

presents a literature review on the multi-products unidirectional 

pipeline scheduling problems. In Section 4, the proposed MILP 

model is presented. Section 5 presents the computational results. 

Finally, Section 6 presents conclusions and future research 

which may result from this work. 

2 PROBLEM DEFINITION 

The problem studied in this paper is illustrated in Figure 1. 

Phosphate ore is processed in the washing stations to create a 

product slurry. The phosphate ore slurry is either stored in a tank 

at the washing station if the flow rate of production is different 

from the transportation flow rate of the related secondary 

pipeline (case of washing station 𝑊1), or to be send directly to 

the head station. In the head station, the tank 𝑉2,1 is dedicated to 

the storage of the primary product 𝑃1, which accounts for over 

90% of the total demand. The other products can be stored in 

the tank 𝑉2,2 . The slurry pipeline transports product batches 

from the head station to the terminal station. In the terminal 

station 𝑉3,1 is dedicated to the storage of 𝑃1 and 𝑉3,2 is used for 

the storage of the other products that are then processed by the 

filtration unit. Based on the demand, the objective is to provide 

a tailed scheduling of batches in the washing stations, secondary 

pipelines and the slurry pipeline while maximizing the 

utilization rate of the slurry pipeline. Furthermore, detailed 

storage management is needed to ensure respecting storage 

capacity and contamination constraints.  

 

Figure 1. The scheduling problem schematic overview 

The following inputs settings are known: 

• the number of products. 

• the number of time intervals in the scheduling horizon. 

• the maximum number of new batches that can be charged 

in the slurry pipeline during the scheduling horizon. 

• the length of the scheduling horizon. 

• the flow rate of pipelines, the production rate of washing 

stations, and the processing flow rate of the filtration 

station. 

• the upper and lower bounds of batch sizes. 

• The setup duration of the washing stations and the 

minimal shutdown duration for the secondary pipelines 

between the washing stations and the head station. 

• the continuous consumption flow rate of 𝑃1  and the 

overall demand for the other products at the filtration 

station. 

• the set of allowed products to be scheduled in the 

washing stations, secondary pipelines, and tanks. 

• the initial state of the slurry pipeline: (old) batches 

charged in the slurry pipeline at the beginning of time 

horizon. 

• the initial inventory levels and products present in the 

tanks. 

The following assumptions are considered: 

• the pipeline is always full, and the contained products are 

incompressible. 

• the flow rate of the slurry pipeline is uniform. 

• only one product can be stored in a tank at a given time 

interval. 

• only one product can be charged in the slurry pipeline at 

a given time interval. 

• only one product can be scheduled in a washing station 

at a given time interval. 

• all tanks contain an initial quantity of a given product at 

the start of the scheduling horizon. 

• the stoppage of the slurry pipeline is not allowed. In case 

of the saturation of storage capacity at terminal station, a 

volume of water will be injected in the slurry pipeline. 

• intermediate storage tank is not considered at washing 

stations if the pumping rate of the related secondary 

pipeline is equal to that of production. 

• the washing stations 𝑊1  and 𝑊2  are dedicated for the 

production of 𝑃1. 

3 LITERATURE REVIEW 

In previous years, pipeline scheduling problems have gained 

increased attention due to the potential for operational cost 

savings. Most of existing works in the literature on this topic 

focuses on the petroleum industry, with fewer published works 

addressing scheduling problems in the context of mining 

industry. These problems can vary in complexity and can be 

classified based on pipeline structure and its number of sources 

and destinations (Magatão et al., 2015): straight pipeline, tree-

structured pipeline, and pipeline network. Furthermore, pipeline 

scheduling problems are NP-complete, as demonstrated by 



(Jittamai, 2004) for a simple problem of multi-product 

scheduling of a single-source pipeline subject to delivery time 

windows. 

This paper is specifically interested in the multiproduct slurry 

pipeline scheduling problem, the washing stations scheduling 

problem, and the multiproduct storage management problem in 

the context of the phosphate mining industry. A set of secondary 

pipelines is also considered. The previous works on pipeline 

scheduling can be divided into two main categories based on the 

time formulation used: continuous time and discrete time 

formulations. 

The continuous-time formulation, which divides the scheduling 

horizon based on the start and end time of each task, is the most 

used in the literature. Works such as (Relvas et al., 2006; Relvas 

et al., 2009; Cafaro and Cerdá, 2008; MirHassani and 

BeheshtiAsl, 2013; Moradi and MirHassani, 2016; Chen et al., 

2019; Bamoumen et al., 2023) have employed mixed-integer 

linear programming (MILP) models with a continuous time 

formulation to address pipeline scheduling. The continuous time 

formulation models are generally successful in minimizing the 

scale and complexity of the problem and can be used in addition 

to heuristic methods to overcome computational difficulties. 

(Relvas et al., 2006) uses a MILP approach for a multiproduct 

one-to-one pipeline scheduling and inventory management 

problem where storage levels are balanced daily during a one-

month scheduling time horizon. The model is initialized with 

either a fixed sequence of batches, a part of the sequence is fixed 

(mixed sequence) or all the sequence is free. The MILP is able 

to reach feasibility for the fixed and mixed sequences but 

requires decomposing the scheduling horizon into two periods 

(15 days each) and solving two MILP problems for free 

sequences. A solution for generating desirable sequences was 

proposed by (Relvas et al., 2009), where a heuristic can compute 

initial fixed sequences for the MILP model. The final 

scheduling solution was tested on three real scenarios varying 

on the length of the scheduling horizon.  

(Bamoumen et al., 2023) uses a MILP model, focusing on the 

discharging time axis, to provide a scheduling solution for the 

multi-product straight unidirectional pipeline scheduling 

problem. In addition, a GRASP-like algorithm, using a 

construction method and an improvement procedure, is used to 

solve the same problem. The GRASP-like algorithm was 

compared to the MILP model, proving its ability to provide 

competitive results both in terms of solution quality and CPU 

time. 

(Chen et al., 2019) uses a generalized MILP approach for 

pipeline network scheduling. The number of time intervals and 

the number of batches are given as input. The objective of the 

model is to minimize the makespan while providing the length 

of every time interval and a single charging and discharging 

decision for every pipeline during every time interval. In 

addition, the storage level of the tanks is updated at the end of 

every time interval. Therefore, the proposed model can ensure 

better storage management than models where storage levels are 

calculated during a number of predefined time stamps. The 

results were compared with instances from the literature such as 

from (Cafaro and Cerdá, 2012), proving the model to be 

versatile in solving a range of pipeline network scheduling 

problems in a reasonable CPU time. 

While most works in the literature consider the due date of 

product consumption at the end of the scheduling horizon, in 

real-world problems demand can vary during the scheduling 

horizon. Therefore, dynamic models with flexible demand 

representations are more useful, but also more complex than 

static models where demand is linearized over the duration of 

the scheduling horizon. Furthermore, in the case of a limited 

storage autonomy, combined with a continuous consumption 

flow rate, a more rigorous storage management is needed.  

(Moradi and MirHassani, 2016) proposes an approach to take 

demand uncertainty into consideration. A deterministic demand 

is used by a MILP model, then, a Γ- robustness approach is used 

to extend the model to a robust formulation. Results prove the 

feasibility of most of the scenarios studied. 

The discrete-time formulation aims to divide the scheduling 

horizon into multiple time intervals and the pipeline into 

multiple packages, each containing a single product. Works 

such as (Shah, 1996; Relvas et al., 2013; Sidki et al., 2022) have 

used MILP models and decomposition approaches with this 

formulation to address pipeline scheduling problems. (Relvas et 

al., 2013) used two MILP models: The Fixed Batch Size using 

predefined batch sizes based on the scheduled products and the 

Variable Batch Size model introduces an upper and lower bound 

for batch sizes. The two models were compared demonstrating 

that the Variable Batch Size model provides more flexible 

solutions using less CPU time. (Sidki et al., 2022) proposed a 

mixed-integer linear programming model with a discrete-time 

formulation to solve a storage-sensitive slurry pipeline 

scheduling problem. The proposed model aims to minimize the 

total products sold-out and the total water volume charged in the 

slurry pipeline. The model was tested on different instances of 

a scheduling horizon of 2 days, demonstrating it can achieve 

optimality in few seconds. 

The model proposed in this paper makes use of some pipeline 

scheduling principles presented by (Chen et al., 2019) and the 

overall literature, specialty for the slurry pipeline scheduling. A 

predetermined number of time intervals is given in advance. The 

objective is to maximize the use of the slurry pipeline 

transporting products while providing for every time interval, 

the decision to be made for the charging and discharging 

operations in the slurry pipeline, the decision to be made in 

every secondary pipeline and washing station, and providing 

detailed storage management while considering the capacity 

constraints of the tanks and avoiding contamination. 

The contribution of this work to the literature is summarized as 

follows: 

• A detailed scheduling solution for the washing stations 

and the secondary pipelines. In the literature, the 

refineries are generally simplified to a continuous 

production flow rate for all products. 

• A solution for managing multiproduct tanks able to store 

different products. 

• A total discharge of the slurry pipeline at the end of the 

scheduling horizon to observe the impact of scheduling 

decisions on demand and tanks in the terminal station. 

Nomenclature 

Sets and indexes 

- 𝑖 ∈ 𝐼 = {1, … , 𝐼𝑀} : set of batches transported by the 

slurry pipeline. 𝐼𝑀 = 𝐼𝑂𝑀 + 𝐼𝑁𝑀, 𝐼𝑂𝑀 is the number 

of old batches and 𝐼𝑁𝑀 is the number of new batches. 

- 𝐼𝑂 = {1,2, … , 𝐼𝑂𝑀} : set of old batches in the slurry 

pipeline at the start of a scheduling horizon, numbered 

from the farthest to closest to the origin of the pipeline. 

- 𝐼𝑁 = {𝐼𝑂𝑀 + 1, … , 𝐼𝑁𝑀} : set of new batches to be 

charged in the slurry pipeline during the scheduling 

horizon. 

- 𝑗 ∈ 𝐽𝑛 = {1,2}: set of stations along the slurry pipeline. 

𝑗 = 1 represent the head station and 𝑗 = 2 represent the 

terminal station. 



- 𝑘 ∈ 𝐾 = {1, … , 𝐾𝑀} : set of time nodes. 𝐾𝑀  is the 

number of time nodes for the charging operations of the 

slurry pipeline. 

- 𝑚 ∈ 𝑀 = {1, … , 𝑀𝑀}: set of stations. 𝑀𝑀 indicates the 

total number of stations containing storage tanks. 

- 𝑝 ∈ 𝑃 = {1, … , 𝑃𝑀}: set of products. 𝑃𝑀  indicates the 

total number of products. 

- 𝑐𝑝 ∈ 𝐶𝑃 = {1, … , 𝐶𝑃𝑀}: set of products defined by a 

continuous consumption flow rate. 

- 𝑑𝑝 ∈ 𝐷𝑃 = {𝐶𝑃𝑀 + 1, … , 𝑃𝑀}: set of products defined 

by a total quantity to be satisfied at the end of the 

scheduling horizon. 

- 𝑠 ∈ 𝑆𝑚 = {1, … , 𝑆𝑀𝑚}: set of tanks at every station 𝑚. 

- 𝑞 ∈ 𝑊𝑆 = {1, … , W𝑀, … , 𝑊𝑀 + 𝐹𝑀} : set of washing 

stations and secondary pipelines. W𝑀 indicates the total 

number of washing stations and 𝐹𝑀 indicates the total 

number of secondary pipelines. 

- 𝑎 ∈ 𝐶𝑈𝑞 : set of allowed decisions to take place in the 

washing station 𝑞. 𝐶𝑈𝑞 contains the products that can be 

processed by 𝑞 and 𝑎 = 𝑃𝑀 + 1 reffers to a shutdown 

decision. 

- 𝑏 ∈ 𝐶𝑆𝑚,𝑠: Set of products allowed be stored in the tank 

𝑠 in the station 𝑚. 

Continuous Parameters 

- 𝐹: volume of the slurry pipeline (m3). 

- 𝑄𝐼𝐴: the flow rate of the slurry pipeline (m3/h). 

- 𝐹𝐹𝑈: maximum flow rate of the filtration unit. 

- 𝑄𝑅𝑞,𝑝: The processing flow rate of product 𝑝 in 𝑞. 

- 𝑇𝐿 : length of the scheduling horizon of the charging 

operations of the slurry pipeline. 

- 𝑉𝐵𝑃𝐴𝑝 , 𝑉𝐵𝑃𝐼𝑝 : maximum and minimum sizes of a 

product batch 𝑝 ∈ 𝑃 or a batch of water (𝑝 = 𝑃𝑀 + 1) 

charged into the slurry pipeline. 

- 𝑉𝑀𝑇𝐴𝑚,𝑠 ,𝑉𝑀𝑇𝐼𝑚,𝑠 : maximum and minimum allowed 

inventory levels in tank 𝑠 at the station 𝑚. 

- 𝑉𝑀𝑇𝑂𝑚,𝑠: initial inventory in the tank 𝑠 in the station 𝑚. 

- 𝑉𝑀𝑃𝐷𝑝 : for 𝑝 ∈ 𝐶𝑃, 𝑉𝑀𝑃𝐷𝑝  is the consumption flow 

rate of product 𝑝 . for 𝑝 ∈ 𝐷𝑃 , 𝑉𝑀𝑃𝐷𝑝  is the overall 

demand quantity of product 𝑝. 

- 𝑊𝑂𝑖: initial volume of old batch 𝑖 in the slurry pipeline. 

- 𝑉𝐵𝑊𝑆𝑞,𝑝: minimum size of batch of product 𝑝 allowed 

in the washing stations or the secondary pipeline 𝑞. 

- 𝑊𝑆𝑇𝑞 : washing stations 𝑞  setup deration or minimal 

stoppage duration for the secondary pipeline 𝑞. 

- 𝜏: Minimum length of a time interval. 

- 𝑀: A large constant. 

Binary Parameters 

- 𝐹𝐵𝑝,𝑝′: 1 if product or water 𝑝 and product or water 𝑝′ 

are allowed to be adjacently transported in the slurry 

pipeline. 

- 𝑌𝑂𝑖,𝑝: 1 if old batch 𝑖 ∈ 𝐼𝑂 in the slurry pipeline consists 

of product 𝑝 ∈ 𝑃 or water (𝑝 = 𝑃𝑀 + 1). 

- 𝐴𝑆𝑞,𝑚,𝑠: 1 if the washing station or secondary pipeline 𝑞 

is linked to the tank 𝑠 in the station 𝑚 

- 𝑂𝑆𝑚,𝑠,𝑝: 1 if tank 𝑠 in the station 𝑚 contain product 𝑝 at 

the start of the scheduling horizon. 

Continuous variables 

- 𝑡𝑘: a time node (date of a given event). 

- 𝑙𝑘: length of time interval (𝑡𝑘, 𝑡𝑘+1), 𝑙𝑘 = 𝑡𝑘+1 − 𝑡𝑘. 

- ℎ𝑖,𝑘: upper volumetric coordinate of batch 𝑖 in the slurry 

pipeline at 𝑡𝑘. 

- 𝑙𝑥𝑗,𝑖,𝑘 : The duration of charging into ( 𝑗 = 1 ) or 

discharging from (𝑗 = 2) batch 𝑖 during (𝑡𝑘, 𝑡𝑘+1). 

- 𝑣𝑗,𝑖,𝑘 : volume of batch 𝑖  that station 𝑗  charges into or 

discharges from the slurry pipeline during (𝑡𝑘, 𝑡𝑘+1). 

- 𝑣𝑝𝑗,𝑖,𝑝,𝑘: volume of product 𝑝 from batch 𝑖 that the slurry 

pipeline charges from or discharges into station 𝑗 during 

(𝑡𝑘, 𝑡𝑘+1). 

- 𝑣𝑚𝑐𝑝𝑝,𝑘: volume of product 𝑝 that the terminal station 

supplies to its client during (𝑡𝑘, 𝑡𝑘+1). 

- 𝑣𝑚𝑡𝑚,𝑠,𝑘: inventory level in the tank 𝑠 in station 𝑚 at 𝑡𝑘. 

- 𝑤𝑖,𝑘: volume of batch 𝑖 in the slurry pipeline at 𝑡𝑘. 

- 𝑏𝑤𝑞,𝑎,𝑘: the processing duration of a scheduling decision 

𝑎 ∈ 𝐶𝑈𝑞  in unit 𝑞 during (𝑡𝑘, 𝑡𝑘+1). 

- 𝑙𝑤𝑞,𝑎,𝑘: the total processing duration of the continuous 

scheduling of decision 𝑎 ∈ 𝐶𝑈𝑞 in unit 𝑞 up to the time 

interval (𝑡𝑘 , 𝑡𝑘+1). 

- 𝑙𝑏𝑤𝑞,𝑎,𝑘 : variable used to linearize the product of  

𝑦𝑤𝑞,𝑎,𝑘 and 𝑏𝑤𝑞,𝑎,𝑘−1. 

Binary variables 

- 𝑠𝑝𝑘: 1 the slurry pipeline is active during (𝑡𝑘, 𝑡𝑘+1). 

- 𝑥𝑗,𝑖,𝑘: 1 if the station 𝑗 charges into batch 𝑖 or discharges 

from batch 𝑖 during (𝑡𝑘, 𝑡𝑘+1). 

- 𝑦𝑖,𝑝: 1 if batch 𝑖 in the slurry pipeline contains product 𝑝. 

- 𝑞𝑠𝑡𝑚,𝑠,𝑏,𝑘 : 1 if tank 𝑠  contain product 𝑏  at 𝑡𝑘  in the 

station 𝑚. 𝑞𝑠𝑡𝑚,𝑠,𝑏,𝑘 is defined for only the multiproduct 

tanks, meaning  |𝐶𝑆𝑚,𝑠| > 1. 

- 𝑦𝑤𝑞,𝑎,𝑘: 1 if unit 𝑞 processes 𝑎 ∈ 𝐶𝑈𝑞 during (𝑡𝑘, 𝑡𝑘+1). 

- 𝑒𝑤𝑞,𝑎,𝑘: 1 if the time interval (𝑡𝑘 , 𝑡𝑘+1) coincides with 

the end of the processing of 𝑎 ∈ 𝐶𝑈𝑞 in 𝑞 (the end of a 

product batch or a shutdown). 

- 𝑎𝑣𝑝𝑚,𝑠,𝑘 : 1 if the tank 𝑠  in the station 𝑚  is empty at 

moment 𝑡𝑘. 𝑎𝑣𝑝𝑚,𝑠,𝑘 is defined if |𝐶𝑆𝑚,𝑠| > 1. 

 

These variables and the previously defined parameters are used 

in the mixed-integer linear programming model (MILP) 

presented in the next section. 

4 MATHEMATICAL MODEL 

4.1 Objective function 

The objective function is to maximize the use of the slurry 

pipeline for transporting products during the scheduling horizon 

(𝑡1, 𝑡𝐾𝑀). 𝑄𝐼𝐴 × 𝑇𝐿 is the total capacity of the slurry pipeline 

and ∑ ∑ 𝑣𝑝1,𝑖,𝑃𝑀+1,𝑘𝑘∈{1,…,𝐾𝑀−1}𝑖∈{𝐼𝑂𝑀−1…,𝐼𝑁𝑀}  is the total 

volume of water charged during the scheduling horizon. 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑍  (1) 

where 𝑍 = (
𝑄𝐼𝐴×𝑇𝐿−∑ ∑ 𝑣𝑝1,𝑖,𝑃𝑀+1,𝑘𝑘∈{1,…,𝐾𝑀−1}𝑖∈{𝐼𝑂𝑀−1…,𝐼𝑁𝑀}

𝑄𝐼𝐴×𝑇𝐿
). 

4.2 Time constraints 

The beginning of the scheduling horizon is formulated as the 

first-time node. The last time node for the charging operations 

in the slurry pipeline must be equal to the length of the 

scheduling horizon 𝑇𝐿 . After 𝑡𝐾𝑀  the content of the slurry 

pipeline is discharged/emptied until 𝑡𝐾𝑀+𝐼𝑁𝑀. 
𝐹

𝑄𝐼𝐴
 indicates the 

total transportation time in the slurry pipeline. 

𝑡1 = 0 (2) 

𝑡𝐾𝑀 = 𝑇𝐿 (3) 

𝑡𝐾𝑀+𝐼𝑁𝑀 = 𝑇𝐿 +
𝐹

𝑄𝐼𝐴
 (4) 



Constraint (5) states the relation between two consecutive time 

nodes. For the time intervals in (𝑙𝐾𝑀 , … , 𝑙𝐾𝑀+𝐼𝑁−1) the batches 

in 𝐼𝑁, contained in the slurry pipeline, are discharged. 

𝑡𝑘+1 = 𝑡𝑘 + 𝑙𝑘  ∀ 𝑘 ∈ {1, … , 𝐾𝑀 + 𝐼𝑁𝑀 − 1} (5) 

A lower bound 𝜏 is considered for every time interval 𝑙𝑘 . 𝜏 is 

relative the minimal charging duration of a batch of water in the 

slurry pipeline. 

𝑙𝑘 ≥ 𝜏 ∀ 𝑘 ∈ {1, … , 𝐾𝑀 + 𝐼𝑁𝑀 − 1} (6) 

 

4.3 Washing stations and secondary pipelines 

During every time interval, only one decision 𝑎 ∈ 𝐶𝑈𝑞  

(production or a shutdown) should be taken in a washing station 

𝑞 as shown in equation (7). 

∑ 𝑦𝑤𝑞,𝑎,𝑘𝑎∈𝐶𝑈𝑞
= 1 ∀ 𝑞 ∈ 𝑊𝑆, 𝑘 ∈ {1, … , 𝐾𝑀 − 1} (7) 

After every product change in a washing station 𝑞 , a station 

shutdown needs to be scheduled. In equation (8) if 𝑦𝑤𝑞,𝑎,𝑘−1 =

1 , either the same product 𝑎 ∈ 𝐶𝑈𝑞\{𝑃𝑀 + 1}  needs to be 

processed during (𝑡𝑘 , 𝑡𝑘+1) (𝑦𝑤𝑞,𝑎,𝑘 = 1) or a shutdown needs 

to take place during (𝑡𝑘, 𝑡𝑘+1) (𝑦𝑤𝑞,𝑃𝑀+1,𝑘 = 1).  

∀ 𝑞 = {1,2, … , W𝑀}, 𝑎 ∈ 𝐶𝑈𝑞\{𝑃𝑀 + 1}, 𝑘 ∈ {1, … , 𝐾𝑀 − 1}: 

𝑦𝑤𝑞,𝑎,𝑘−1 ≤ 𝑦𝑤𝑞,𝑎,𝑘 + 𝑦𝑤𝑞,𝑃𝑀+1,𝑘 (8) 

Based on the scheduling decision 𝑦𝑤𝑞,𝑎,𝑘  of the washing 

stations or the secondary pipelines 𝑞, for 𝑎 ∈ 𝐶𝑈𝑞  and during 

(𝑡𝑘 , 𝑡𝑘+1). 𝑏𝑤𝑞,𝑝,𝑘 is calculated as the product of  𝑦𝑤𝑞,𝑝,𝑘  and 

𝑙𝑘. Therefore, if  𝑏𝑤𝑞,𝑎,𝑘 = 𝑙𝑘 if only if 𝑦𝑤𝑞,𝑎,𝑘 = 1. Otherwise, 

𝑏𝑤𝑞,𝑎,𝑘 = 0. 

∀ 𝑞 ∈ 𝑊𝑆, 𝑎 ∈ 𝐶𝑈𝑞 , 𝑘 ∈ {1, … , 𝐾𝑀 − 1}: 

𝑦𝑤𝑞,𝑎,𝑘 = 1 → 𝑏𝑤𝑞,𝑎,𝑘 = 𝑙𝑘 (9) 

𝑦𝑤𝑞,𝑎,𝑘 = 0 → 𝑏𝑤𝑞,𝑎,𝑘 = 0 (10) 

The duration of a continuous production or a continuous 

shutdown until a given time interval (𝑡𝑘, 𝑡𝑘+1)  in a unit 𝑞  is 

determined as to be able to respect the minimal batch size 

constraints and the minimal setup duration constraints. 𝑙𝑤𝑞,𝑎,𝑘 

represents the cumulative duration of taking the scheduling 

decision 𝑎 ∈ 𝐶𝑈𝑞  up to the time interval (𝑡𝑘, 𝑡𝑘+1) for a unit 𝑞. 

The variable 𝑙𝑏𝑤𝑞,𝑎,𝑘 helps to verify if the scheduling decision 

𝑎 ∈ 𝐶𝑈𝑞is taken during (𝑡𝑘, 𝑡𝑘+1), if it is the case, 𝑙𝑏𝑤𝑞,𝑎,𝑘 =

𝑙𝑤𝑞,𝑎,𝑘−1; otherwise 𝑙𝑏𝑤𝑞,𝑎,𝑘 = 0. Equations (11), (12),(13) and 

(14) summarizes 𝑙𝑤𝑞,𝑎,𝑘  and 𝑙𝑏𝑤𝑞,𝑎,𝑘  calculations and (Figure 

2) presents an example of these calculations. 

𝑙𝑤𝑞,𝑎,0 = 𝑏𝑤𝑞,𝑎,0 ∀ 𝑞 ∈ 𝑊𝑆, 𝑎 ∈ 𝐶𝑈𝑞  (11) 

∀ 𝑞 ∈ 𝑊𝑆, 𝑎 ∈ 𝐶𝑈𝑞 , 𝑘 ∈ {2, … , 𝐾𝑀 − 1}: 

𝑙𝑤𝑞,𝑎,𝑘 = 𝑏𝑤𝑞,𝑎,𝑘 + 𝑙𝑏𝑤𝑞,𝑎,𝑘 (12) 

𝑦𝑤𝑞,𝑎,𝑘 = 1 → 𝑙𝑏𝑤𝑞,𝑎,𝑘 = 𝑙𝑤𝑞,𝑎,𝑘−1 (13) 

𝑦𝑤𝑞,𝑎,𝑘 = 0 → 𝑙𝑏𝑤𝑞,𝑎,𝑘 = 0 (14) 

 

Figure 2. Example of 𝒍𝒘𝒒,𝒂,𝒌 and 𝒍𝒃𝒘𝒒,𝒂,𝒌 calculations 

 

To be able to track the end of a product batch or a shutdown, the 

binary variable 𝑒𝑤𝑞,𝑎,𝑘  indicates the end of processing the 

scheduling decision 𝑎 ∈ 𝐶𝑈𝑞in 𝑞 during (𝑡𝑘, 𝑡𝑘+1). 𝑒𝑤𝑞,𝑎,𝑘 = 1 

if only if 𝑦𝑤𝑞,𝑎,𝑘 = 1 and ∑ 𝑦𝑤𝑞,𝑧,𝑘+1𝑧∈𝐶𝑈𝑎,𝑧≠𝑎 = 1, meaning 

that 𝑎 is scheduled during (𝑡𝑘, 𝑡𝑘+1) and another decision 𝑧 ≠
𝑎 is scheduled during (𝑡𝑘+1, 𝑡𝑘+2). 

∀ 𝑞 ∈ 𝑊𝑆, 𝑎 ∈ 𝐶𝑈𝑞 , 𝑘 ∈ {1, … , 𝐾𝑀 − 2}: 

𝑒𝑤𝑞,𝑎,𝑘 ≥ 𝑦𝑤𝑞,𝑎,𝑘 + ∑ 𝑦𝑤𝑞,𝑧,𝑘+1𝑧∈𝐶𝑈𝑎,𝑧≠𝑎 − 1 (15) 

𝑒𝑤𝑞,𝑎,𝑘 ≤ ∑ 𝑦𝑤𝑞,𝑧,𝑘+1𝑧∈𝐶𝑈𝑎,𝑧≠𝑎  (16) 

𝑒𝑤𝑞,𝑎,𝑘 ≤ 𝑦𝑤𝑞,𝑎,𝑘 (17) 

For every product batch in a washing station or a secondary 

pipeline, a minimal batch size constraint should be respected as 

presented in equation (18). Furthermore, a minimal shutdown 

duration should be respected as a setup duration for the washing 

stations and as minimal stoppage duration for the secondary 

pipeline as in equation (19).  

∀ 𝑞 ∈ 𝑊𝑆, 𝑎 ∈ 𝐶𝑈𝑞\{𝑃𝑀 + 1}, 𝑘 ∈ {2, … , 𝐾𝑀 − 2}: 

𝑙𝑤𝑞,𝑎,𝑘 × 𝑄𝑅𝑞,𝑎 ≥ 𝑒𝑤𝑞,𝑝,𝑘 × 𝑉𝐵𝑊𝑆𝑞,𝑝 (18) 

∀ 𝑞 ∈ 𝑊𝑆, 𝑘 ∈ {2, … , 𝐾𝑀 − 2}: 

𝑙𝑤𝑞,𝑃𝑀+1,𝑘 ≥ 𝑒𝑤𝑞,𝑃𝑀+1,𝑘 × 𝑊𝑆𝑇𝑞  (19) 

 

4.4 Volumes and products of batches in the slurry pipelines 

The sequence of the batches charged in slurry pipeline before 

the start of the scheduling horizon is known in advance and used 

to initialize the values of 𝑦𝑖,𝑝. 𝑝 = 𝑃𝑀 + 1 refers to a batch 

of water. 

𝑦𝑖,𝑝 = 𝑌𝑂𝑖,𝑝 ∀ 𝑖 ∈ 𝐼𝑂, 𝑝 ∈ 𝑃 + {𝑃𝑀 + 1} (20) 

Any new batch injected into the slurry pipeline during the 

scheduling horizon consists of at most one product or water. If 

𝑖  does not contain a product or water, it is considered as a 

fictitious batch. 

∑ 𝑦𝑖,𝑝 ≤ 1𝑃𝑀+1
𝑝=1  ∀ 𝑖 ∈ 𝐼𝑁 (21) 

All fictitious batches are arranged after nonempty batches. 

∑ 𝑦𝑖,𝑝 ≥ ∑ 𝑦𝑖+1,𝑝
𝑃𝑀+1
𝑝=1

𝑃𝑀+1
𝑝=1  ∀ 𝑖 ∈ {𝐼𝑂𝑀 + 1, … , 𝐼𝑀 − 1} (22) 

No different products are allowed to be charged successively in 

the slurry pipeline. A batch of water must separate between 

different products as to avoid contaminations and to be able to 

detect batches extremities at the terminal station. Equation (23) 

satisfies this constraint. 

∀ 𝑖 ∈ 𝐼𝑁, 𝑝 ∈ 𝑃 + {𝑃𝑀 + 1}, 𝑝′ ∈ 𝑃 + {𝑃𝑀 + 1} : 
𝑦𝑖,𝑝 + 𝑦𝑖+1,𝑝′ ≤ 1 +  𝐹𝐵𝑝,𝑝′ (23) 

At the start of the scheduling horizon, the head station can 

continue to inject an additional quantity to the old batch 𝐼𝑂𝑀. 

𝐼𝑂𝑀 is the initialization batch that is closest to the origin of the 

slurry pipeline. The minimal and maximal batch size constraints 

for the batch 𝐼𝑂𝑀 are presented in equations (24) and (25). 

∀ 𝑝 ∈ 𝑃 + {𝑃𝑀 + 1} : 
∑ 𝑣𝑝1,𝐼𝑂𝑀,𝑝,𝑘

𝐾𝑀−1
𝑘=1 + 𝑦𝐼𝑂𝑀,𝑝 × 𝑊𝑂𝐼𝑂𝑀 ≥ 𝑦𝐼𝑂𝑀,𝑝 × 𝑉𝐵𝑃𝐼𝑃  (24) 

∑ 𝑣𝑝1,𝐼𝑂𝑀,𝑝,𝑘
𝐾𝑀−1
𝑘=1 + 𝑦𝐼𝑂𝑀,𝑝 × 𝑊𝑂𝐼𝑂𝑀 ≤ 𝑦𝐼𝑂𝑀,𝑝 × 𝑉𝐵𝑃𝐴𝑃(25) 

The minimal and maximal batch size constraints for the rest of 

the batches are presented in equation (26). 

∀ 𝑖 ∈ 𝐼𝑁, 𝑝 ∈ 𝑃 + {𝑃𝑀 + 1} : 
𝑦𝑖,𝑝 × 𝑉𝐵𝑃𝐼𝑃 ≤ ∑ 𝑣𝑝1,𝑖,𝑝,𝑘

𝐾𝑀−1
𝑘=1 ≤ 𝑦𝑛,𝑖,𝑝 × 𝑉𝐵𝑃𝐴𝑛,𝑃 (26) 

 

4.5 Batch tracking in the slurry pipeline 

The volume of batch 𝑖  in the slurry pipeline at moment 𝑡𝑘+1 

(𝑘 < 𝐾𝑀) is equal to the summation of the volume of the batch 

𝑖  at 𝑡𝑘  ( 𝑤𝑖,𝑘 ), the volume injected to the batch 𝑖  during 

(𝑡𝑘, 𝑡𝑘+1) (𝑣1,𝑖,𝑘) and subtracting the volume discharged in the 

terminal station from batch 𝑖 during (𝑡𝑘, 𝑡𝑘+1). For 𝑡𝑘+1, where 

𝑘 ∈ {𝐾𝑀, … , 𝐾𝑀 + 𝐼𝑁𝑀},  the charged volume is not taken into 

consideration as we are interested in fully discharging the 



batches present in the slurry pipeline without taking any 

charging decisions.  

∀ 𝑖 ∈ 𝐼, 𝑘 ∈ {1, … , 𝐾𝑀 − 1}: 

𝑤𝑖,𝑘+1 = 𝑤𝑖,𝑘 + 𝑣1,𝑖,𝑘 − 𝑣2,𝑖,𝑘 (27) 

∀ 𝑖 ∈ 𝐼, 𝑘 ∈ {𝐾𝑀, … , 𝐾𝑀 + 𝐼𝑁𝑀 − 1}: 

𝑤𝑖,𝑘+1 = 𝑤𝑖,𝑘 − 𝑣2,𝑖,𝑘  (28) 

𝑤𝑛,𝑖,1 is initialized with the volumes of the initialization batches. 

𝑤𝑖,1 = 𝑤𝑂𝑖  ∀ 𝑖 ∈ 𝐼𝑂 (29) 

The volumes of all the new batches at the start of the scheduling 

horizon in the slurry pipeline are initialized to zero. 

𝑤𝑖,1 = 0 ∀ 𝑖 ∈ 𝐼𝑁 (30) 

The upper coordinate of batch 𝑖 in in the slurry pipeline is equal 

to the sum of the upper coordinate of batch 𝑖 +  1  and the 

volume of batch 𝑖. 
∀ 𝑖 ∈ {1, … 𝐼𝑀 − 1}, 𝑘 ∈ {1, … , 𝐾𝑀 + 𝐼𝑁𝑀}: 

ℎ𝑖,𝑘 = ℎ𝑖+1,𝑘 + 𝑤𝑖,𝑘  (31) 

The lower coordinate of the last batch 𝐼𝑀  charged into the 

slurry pipeline is equal to zero. Therefore, its upper coordinate 

must be equal to its volume.  

ℎ𝐼𝑀,𝑘 = 𝑤𝐼𝑀,𝑘 ∀ 𝑘 ∈ {1, … , 𝐾𝑀} (32) 

The first batch 𝑖 =  1 charged into the slurry pipeline is the 

farthest from the origin of the pipeline and its upper coordinate 

is equal the volume of the slurry pipeline. 

ℎ1,𝑘 = 𝐹 ∀ 𝑘 ∈ {1, … , 𝐾𝑀 + 𝐼𝑁𝑀} (33) 

The upper coordinate of all batches in the slurry pipeline must 

be lower than its volume. 

ℎ𝑖,𝑘 ≤ 𝐹 ∀ 𝑖 ∈ 𝐼, 𝑘 ∈ {1, … , 𝐾𝑀 + 𝐼𝑁𝑀} (34) 

 

4.6 Charging and discharging operations in the slurry pipeline 

The duration of charging or discharging batch 𝑖 in the slurry 

pipeline in the station 𝑗  during (𝑡𝑘, 𝑡𝑘+1)  is calculated in 

equations (35) and (36) and its relative quantity is calculated in 

equation (39). Equations (37), (38) and (40) are used to calculate 

the quantity and duration of the discharging operations after the 

end of the charging scheduling horizon. 

∀ 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼, 𝑘 ∈ {1, … , 𝐾𝑀 − 1}: 

𝑥𝑗,𝑖,𝑘 = 1 → 𝑙𝑥𝑗,𝑖,𝑘 = 𝑙𝑘 (35) 

𝑥𝑗,𝑖,𝑘 = 0 → 𝑙𝑥𝑗,𝑖,𝑘 = 0 (36) 

∀ 𝑖 ∈ 𝐼, 𝑘 ∈ {𝐾𝑀, … , 𝐾𝑀 + 𝐼𝑁𝑀 − 1}: 

𝑥2,𝑖,𝑘 = 1 → 𝑙𝑥2,𝑖,𝑘 = 𝑙𝑘 (37) 

𝑥2,𝑖,𝑘 = 0 → 𝑙𝑥2,𝑖,𝑘 = 0 (38) 

𝑣𝑗,𝑖,𝑘 = 𝑄𝐼𝐴 × 𝑙𝑥𝑗,𝑖,𝑘 ∀ 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼, 𝑘 ∈ {1, … , 𝐾𝑀 − 1} (39) 

∀ 𝑖 ∈ 𝐼, 𝑘 ∈ {𝐾𝑀, … , 𝐾𝑀 + 𝐼𝑁𝑀 − 1}: 

𝑣2,𝑖,𝑘 = 𝑄𝐼𝐴 × 𝑙𝑥2,𝑖,𝑘 (40) 

Only one product or water can be charged or discharged during 

a time interval (𝑡𝑘, 𝑡𝑘+1) as in equation (9). Therefore, if 𝑦𝑖,𝑝 =

1, 𝑣𝑝𝑗,𝑖,𝑝,𝑘 = 𝑣𝑗,𝑖,𝑘 , otherwise 𝑣𝑝𝑗,𝑖,𝑝,𝑘 = 0 as presented in the 

equations (41) to (44). 

∀ 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼, 𝑘 ∈ {1, … , 𝐾𝑀 − 1}: 

𝑣𝑗,𝑖,𝑘 = ∑ 𝑣𝑝𝑗,𝑖,𝑝,𝑘
𝑃𝑀+1
𝑝=1  (41) 

∀ 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼, 𝑘 ∈ {𝐾𝑀, … , 𝐾𝑀 + 𝐼𝑁𝑀 − 1}: 

𝑣2,𝑖,𝑘 = ∑ 𝑣𝑝2,𝑖,𝑝,𝑘
𝑃𝑀+1
𝑝=1  (42) 

∀ 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 + {𝑃𝑀 + 1}: 

∑ 𝑣𝑝𝑗,𝑖,𝑝,𝑘
𝐾𝑀−1
𝑘=1 ≤ 𝑦𝑖,𝑝 × 𝑄𝐼𝐴 × 𝑇𝐿 (43) 

∀ 𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃 + {𝑃𝑀 + 1} : 
∑ 𝑣𝑝2,𝑖,𝑝,𝑘

𝐾𝑀+𝐼𝑁𝑀−1
𝑘=𝐾𝑀 ≤ 𝑦𝑖,𝑝 × 𝑄𝐼𝐴 × 𝑇𝐿 (44) 

The relation between the quantity that can be charged or 

discharged in the slurry pipeline and the length 𝑙𝑘 of the time 

interval (𝑡𝑘, 𝑡𝑘+1) is established in equations (45) and (46). If 

∑ 𝑥𝑗,𝑖,𝑘
𝐼𝑀𝑛
𝑖=1 = 0 (no batch is charged or discharged in the slurry 

pipeline), constraints (41) and (42) are redundant. 

∀ 𝑗 ∈ 𝐽, 𝑘 ∈ {1, … , 𝐾𝑀 − 1}: 
∑ 𝑣𝑗,𝑖,𝑘

𝐼𝑀
𝑖=1

𝑄𝐼𝐴
≤ 𝑙𝑘 ≤

∑ 𝑣𝑗,𝑖,𝑘
𝐼𝑀
𝑖=1

𝑄𝐼𝐴
+ 𝑇𝐿 × (1 − ∑ 𝑥𝑗,𝑖,𝑘

𝐼𝑀
𝑖=1 ) (45) 

∀ 𝑗 ∈ 𝐽, 𝑘 ∈ {𝐾𝑀, … , 𝐾𝑀 + 𝐼𝑁𝑀 − 1}: 
∑ 𝑣2,𝑖,𝑘

𝐼𝑀
𝑖=1

𝑄𝐼𝐴
≤ 𝑙𝑘 ≤

∑ 𝑣2,𝑖,𝑘
𝐼𝑀
𝑖=1

𝑄𝐼𝐴
+ 𝑇𝐿 × (1 − ∑ 𝑥2,𝑖,𝑘

𝐼𝑀
𝑖=1 ) (46) 

If the head station ( 𝑗 = 1) charges a batch 𝑖  into the slurry 

pipeline during the time interval (𝑡𝑘, 𝑡𝑘+1), batches 𝑖′ ∈ {𝑖 +
1, … , 𝐼𝑀} should not have been charged in the pipeline before 

𝑡𝑘. 

∀ 𝑖 ∈ {IOM, … , 𝐼𝑀 − 1}, 𝑘 ∈ {2, … , 𝐾𝑀 − 1}: (47) 

𝑥1,𝑖,𝑘 + ∑ ∑ 𝑥1,𝑖′,𝑘′
𝑘−1
𝑘′=1

𝐼𝑀
𝑖′=𝑖+1 ≤ 1 + 𝐼𝑀 × 𝐾𝑀 × (1 − 𝑥1,𝑖,𝑘)  

If the head station injects batch 𝑖 into the slurry pipeline during 

(𝑡𝑘, 𝑡𝑘+1), the lower coordinate of batch 𝑖 must be equal to be 

zero at 𝑡𝑘 and 𝑡𝑘+1 as presented in equations (48) and (49). 

∀ 𝑖 ∈ 𝐼𝑁, 𝑘 ∈ {1, … , 𝐾𝑀 − 1}: 

ℎ𝑖,𝑘 − 𝑤𝑖,𝑘 ≤ 𝐹 × (1 − 𝑥1,𝑖,𝑘) (48) 

ℎ𝑖,𝑘+1 − 𝑤𝑖,𝑘+1 ≤ 𝐹 × (1 − 𝑥1,𝑖,𝑘) (49) 

The head station cannot charge more quantities to the 

initialization batches except for the batch 𝐼𝑂𝑀 that is closest the 

the origin of the slurry pipeline. 

∑ 𝑥1,𝑖,𝑘
𝐾𝑀−1
𝑘=1 = 0 ∀ 𝑖 ∈ {1, … , 𝐼𝑂𝑀 − 1} (50) 

For every time interval (𝑡𝑘, 𝑡𝑘+1), if the slurry pipeline is in a 

shutdown, no product is charged or discharged. Otherwise, one 

product at most can be charged in the head station and 

discharged in the terminal station. 

∑ 𝑥1,𝑖,𝑘
𝐼𝑀
𝑖=1 = 𝑠𝑝𝑘 ∀ 𝑘 ∈ {1, … , 𝐾𝑀 − 1} (51) 

∑ 𝑥2,𝑖,𝑘
𝐼𝑀
𝑖=1 = 𝑠𝑝𝑘 ∀ 𝑘 ∈ {1, … , 𝐾𝑀 + 𝐼𝑁𝑀 − 1} (52) 

The stoppages of the slurry pipeline are rare and costly; 

therefore, the industrials prefer to schedule water if no product 

is charged in the slurry pipeline. Constraint (49) can be relaxed 

to take the pipeline stoppages into consideration. 

𝑠𝑝𝑘 ≥ 1 ∀ 𝑘 ∈ {1, … , 𝐾𝑀 + 𝐼𝑁𝑀 − 1} (53) 

If a batch 𝑖  is discharged in the terminal station during 

(𝑡𝑘, 𝑡𝑘+1), its upper volumetric coordinate must be equal to the 

volume of the slurry pipeline at 𝑡𝑘+1. 

ℎ𝑖,𝑘+1 ≥ 𝐹 × 𝑥2,𝑖,𝑘 ∀ 𝑘 ∈ {1, … , 𝐾𝑀 + 𝐼𝑁𝑀 − 1} (54) 

 

4.7 Demand constraints at the terminal station 

To satisfy the continuous demand for products 𝑑𝑐 ∈ 𝐷𝐶 , 

exactly the quantity defined by 𝑑𝑐 consumption flow rate needs 

to be delivered to its local consumer market. 

∀ 𝑑𝑐 ∈ 𝑑𝐶, 𝑘 ∈ {1, … , 𝐾𝑀 + 𝐼𝑁𝑀 − 1}: 

𝑣𝑚𝑐𝑝𝑑𝑐,𝑘 = 𝑉𝑀𝑃𝐷𝑑𝑐 × 𝑙𝑘  (55) 

For products 𝑑𝑝 ∈ 𝐷𝑃 , at least the total demand must be 

satisfied before the end of the scheduling horizon. 

∑ 𝑣𝑚𝑐𝑝𝑑𝑝,𝑘
𝐾𝑀+𝐼𝑁𝑀−1
𝑘=1 ≥ 𝑉𝑀𝑃𝐷𝑑𝑝  ∀ 𝑑𝑝 ∈ 𝐷𝑃 (56) 

At any time node, for products 𝑑𝑝 ∈ 𝐷𝑃 , the total quantity 

delivered to the filtration unit must not exceed its maximal 

processing capacity. 

∀ 𝑑𝑝 ∈ 𝑑𝑃, 𝑘 ∈ {1, … , 𝐾𝑀 + 𝐼𝑁𝑀 − 1}: 

𝑣𝑚𝑐𝑝𝑑𝑝,𝑘 ≤ 𝐹𝐹𝑈 × 𝑙𝑘  (57) 

 

4.8 Inventory management constraints 

The initial inventory level and the initial product stored in every 

tank 𝑠 in every station 𝑚 is prior given. 

𝑣𝑚𝑡𝑚,𝑠,1 = 𝑉𝑀𝑇𝑂𝑚,𝑠 ∀ 𝑚 ∈ 𝑀, 𝑠 ∈ 𝑆𝑚 (58) 

𝑞𝑠𝑡𝑚,𝑠,𝑏,1 = 𝑂𝑆𝑚,𝑠,𝑏 ∀ 𝑚 ∈ 𝑀, 𝑠 ∈ 𝑆𝑚, 𝑏 ∈ 𝐶𝑆𝑚,𝑠 (59) 

Only and only one product can be stored in a tank 𝑠 at 𝑡𝑘 in the 

station 𝑚. 

∀ 𝑚 ∈ {1,2}, 𝑠 ∈ 𝑆𝑚 , 𝑘 ∈ {1, … , 𝐾𝑀}: 

∑ 𝑞𝑠𝑡𝑚,𝑠,𝑏,𝑘 𝑏∈𝐶𝑆𝑚,𝑠
=  1  (60) 



∀ 𝑚 = 3, 𝑠 ∈ 𝑆𝑚, 𝑘 ∈ {1, … , 𝐾𝑀 + 𝐼𝑁𝑀}: 

∑ 𝑞𝑠𝑡𝑚,𝑠,𝑏,𝑘 𝑏∈𝐶𝑆𝑚,𝑠
=  1 (61) 

The change of stored product at 𝑡𝑘 in a tank 𝑠 can take place 

only if 𝑠 is empty. The binary variable 𝑎𝑣𝑝𝑚,𝑠,𝑘  can take the 

value 1 if the tank level 𝑣𝑚𝑡𝑚,𝑠,𝑘 is equal to zero in the station 

𝑚 at 𝑡𝑘. 𝑎𝑣𝑝𝑚,𝑠,𝑘 is defined in equations (62) and (63). 

∀ 𝑚 ∈ {1,2}, 𝑠 ∈ 𝑆𝑚 , 𝑘 ∈ {1, … , 𝐾𝑀}: 

𝑎𝑣𝑝𝑚,𝑠,𝑘 ≤ 1 −
𝑣𝑚𝑡𝑚,𝑠,𝑘

𝑀
 (62) 

∀ 𝑚 = 3, 𝑠 ∈ 𝑆𝑚, 𝑘 ∈ {1, … , 𝐾𝑀 + 𝐼𝑁𝑀}: 

𝑎𝑣𝑝𝑚,𝑠,𝑘 ≤ 1 −
𝑣𝑚𝑡𝑚,𝑠,𝑘

𝑀
 (63) 

If a product 𝑏 is stored in the tank 𝑠 in the station 𝑚 at 𝑡𝑘 , a 

different product can be stored in 𝑠 if only if 𝑎𝑣𝑝𝑚,𝑠,𝑘+1 = 1. 

∀ 𝑚 ∈ {1,2}, 𝑠 ∈ 𝑆𝑚, 𝑏 ∈ 𝐶𝑆𝑚,𝑠, 𝑘 ∈ {1, … , 𝐾𝑀 − 1}: 

𝑞𝑠𝑡𝑚,𝑠,𝑏,𝑘+1 ≥ 𝑞𝑠𝑡𝑚,𝑠,𝑏,𝑘 − 𝑎𝑣𝑝𝑚,𝑠,𝑘+1 (64) 

∀ 𝑚 = 3, 𝑠 ∈ 𝑆𝑚, 𝑏 ∈ 𝐶𝑆𝑚,𝑠, 𝑘 ∈ {1, … , 𝐾𝑀 + 𝐼𝑁𝑀 − 1}: 

𝑞𝑠𝑡𝑚,𝑠,𝑏,𝑘+1 ≥ 𝑞𝑠𝑡𝑚,𝑠,𝑏,𝑘 − 𝑎𝑣𝑝𝑚,𝑠,𝑘+1 (65) 

A product 𝑏 can be charged in the slurry pipeline only if it is 

stored in the multiproduct tank 𝑠 = 2 at the head station. 

∀ 𝑏 ∈ 𝐶𝑆2,2, 𝑘 ∈ {1, … , 𝐾𝑀 − 1}: 

𝑀 × 𝑞𝑠𝑡2,2,𝑏,𝑘 ≥ ∑ 𝑣𝑝1,𝑖,𝑏,𝑘𝑖∈𝐼  (66) 

If a new product 𝑏 is discharged in the terminal station at 𝑡𝑘, the 

quality variable 𝑞𝑠𝑡3,2,𝑏,𝑘 is updated. 

∀ 𝑏 ∈ 𝐶𝑆3,2, 𝑘 ∈ {1, … , 𝐾𝑀 − 1}: 

𝑀 × 𝑞𝑠𝑡3,2,𝑏,𝑘 ≥ ∑ 𝑣𝑝2,𝑖,𝑏,𝑘𝑖∈𝐼  (67) 

If a washing station or a secondary pipeline 𝑞 discharges a new 

product in the tank 𝑠 = 2 in the head station, the tank needs to 

change its quality.  

∀ 𝑏 ∈ 𝐶𝑆2,2, 𝑘 ∈ {1, … , 𝐾𝑀 − 1}: 

𝑀 × 𝑞𝑠𝑡2,2,𝑏,𝑘 ≥ ∑ ∑ 𝐴𝑆𝑞,2,2 × 𝑦𝑤𝑞,𝑝,𝑘𝑝∈𝐶𝑈𝑞∩𝐶𝑆2,2𝑞∈𝑊𝑆  (68) 

A product can be consumed from the tank 𝑠 = 2 in the terminal 

station only if it is available. 

∀ 𝑏 ∈ 𝐶𝑆3,2, 𝑘 ∈ {1, … , 𝐾𝑀}: 

𝑣𝑚𝑐𝑝𝑏,𝑘 ≤ 𝑀 × 𝑞𝑠𝑡3,2,𝑏,𝑘 (69) 

The inventory levels of all the tanks are calculated in the 

following equations. 

∀ 𝑘 ∈ {1, … , 𝐾𝑀 − 1}: 

𝑣𝑚𝑡1,1,𝑘+1 = 𝑣𝑚𝑡1,1,𝑘 + 𝑏𝑤1,1,𝑘 × 𝑄𝑅1,1 − 𝑏𝑤4,1,𝑘 × 𝑄𝑅4,1

 (70) 

𝑣𝑚𝑡2,1,𝑘+1 = 𝑣𝑚𝑡2,1,𝑘 + ∑ 𝑏𝑤𝑞,1,𝑘 × 𝑄𝑅𝑞,1
4
𝑞=2 −

∑ 𝑣𝑝1,𝑖,1,𝑘𝑖∈𝐼  (71) 

𝑣𝑚𝑡2,2,𝑘+1 = 𝑣𝑚𝑡2,2,𝑘 + ∑ 𝑏𝑤3,𝑝,𝑘 × 𝑄𝑅3,𝑝
𝑃𝑀
𝑝=2 −

∑ ∑ 𝑣𝑝1,𝑖,𝑝,𝑘𝑖∈𝐼
𝑃𝑀
𝑝=2   (72) 

∀ 𝑘 ∈ {1, … , 𝐾𝑀 + 𝐼𝑁𝑀 − 1}: 

𝑣𝑚𝑡3,1,𝑘+1 = 𝑣𝑚𝑡3,1,𝑘 + ∑ 𝑣𝑝2,𝑖,1,𝑘𝑖∈𝐼 − 𝑣𝑚𝑐𝑝1,𝑘  (73) 

𝑣𝑚𝑡3,2,𝑘+1 = 𝑣𝑚𝑡3,2,𝑘 + ∑ ∑ 𝑣𝑝2,𝑖,𝑝,𝑘𝑖∈𝐼
𝑃𝑀
𝑝=2 − ∑ 𝑣𝑚𝑐𝑝𝑝,𝑘

𝑃𝑀
𝑝=2

 (74) 

The inventory of every product in every station must be always 

kept within the permissible range. 

∀ 𝑚 ∈ {1,2}, 𝑠 ∈ 𝑆𝑚, 𝑘 ∈ {1, … , 𝐾𝑀}: 

𝑉𝑀𝑇𝐼𝑚,𝑠 ≤ 𝑣𝑚𝑡𝑚,𝑠,𝑘 ≤ 𝑉𝑀𝑇𝐴𝑚,𝑠 (75) 

𝑚 = 3, 𝑠 ∈ 𝑆𝑚 , 𝑘 ∈ {1, … , 𝐾𝑀 + 𝐼𝑁𝑀}: 

𝑉𝑀𝑇𝐼𝑚,𝑠 ≤ 𝑣𝑚𝑡𝑚,𝑠,𝑘 ≤ 𝑉𝑀𝑇𝐴𝑚,𝑠 (76) 

5 CASE STUDY 

The research presented in this paper is motivated by a real-world 

case study of a pipeline network and washing stations 

scheduling problem of the OCP Group. The OCP Group is a 

Moroccan state-owned company that specializes in mining, 

producing, and manufacturing phosphate-based products. In 

particular, the OCP has built a slurry pipeline with a length of 

187km, a total volume of 106000 m3 and a flow rate of 4000 

m3/h to transport large volumes of slurry from the head station 

to the terminal station.  

In order to evaluate the performance of the proposed model, a 

group of 10 scenarios were generated using real dataset from the 

OCP Group's supply chain. These scenarios involve a 

scheduling horizon of the slurry pipeline’s charging operations 

of 𝑇𝐿 = 36 ℎ , and a total scheduling horizon of 62.5 ℎ 

considering all of discharging operations at the terminal station. 

Instances are created using the following criteria: The number 

of products 𝑃𝑀 ∈ {1, 2, 3}, the initial inventory and the capacity 

of storage tanks and the clients’ demands during the planning 

horizon. Please note that the water is used as separator product 

that is not included in 𝑃𝑀. All instances and results presented 

in this section are available at: 

https://zenodo.org/record/7850304#. 

The number of time nodes 𝐾𝑀  is prefixed for each scenario 

according to historical data. The maximum value of KM is 

chosen based on an empirical experiment and it depends on the 

number of products and the length of time horizon. The number 

of batches 𝐼𝑀=𝐼𝑂𝑀 + 𝐼𝑁𝑀, where 𝐼𝑂𝑀 is the number of old 

batches (initial state of the slurry pipeline) and 𝐼𝑁𝑀  is the 

maximum number of new batches. The numerical experiments 

were conducted on a 64 threads CPU (AMD EPYC 7452 32-

Core Processor) with 500 GB of RAM under Linux (Ubuntu 

20.04.5), and the instances were solved using Gurobi 9.5.  

Table 1. Obtained results 

Inst. 

Nb. of 

products 

(𝑃𝑀) 

Nb. of 

time 

nodes 

(𝐾𝑀) 

Nb. of 

batches 

(𝐼𝑂𝑀 +
𝐼𝑁𝑀) 

MILP model 

Obj. 

Function 

CPU 

time 

(s) 

1 3 17 6+9 95.83% 68.49 

2 3 17 7+9 91.15% 274.89 

3 3 17 3+9 95.83% 326.36 

4 3 17 6+9 92.14% 279.46 

5 2 15 3+8 95.83% 7.74 

6 2 15 5+8 94.82% 36.32 

7 2 15 5+8 93.23% 62.62 

8 1 10 3+5 94.44% 0.47 

9 1 10 3+5 94.44% 1.81 

10 1 10 3+5 94.44% 1.91 

As shown in Table 1, the objective value varies from 91.15% to 

95.83% for the group of instances. The difference between 

objective values is mainly from the number of scheduled 

batches (new batches). For instances 8, 9 and 10, the same 

objective value can be explained by the same number of batches 

with identical volume of water in obtained solutions. In term of 

CPU Time, the proposed model provides optimal solutions for 

all instances within less than 6 minutes. Furthermore, Figure 3 

and 5 illustrate the storage levels for products in the terminal 

station for the solution of instance 1. Figure 4 shows the 

scheduling of operations of the slurry pipeline, the secondary 

pipeline 1 and the washing stations with all of related time 

nodes.  

 

Figure 3. Inventory level of 𝑽𝟑,𝟏 of instance 1 
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Figure 4. Scheduling solution of instance 1 

 

 

Figure 5. Inventory level of 𝑽𝟑,𝟐 of instance 1 

6 CONCLUSION 

This paper presents a MILP base approach to optimize the 

detailed scheduling solution for the integrated production 

(washing stations) and multiproduct pipelines transportation 

scheduling problem in the context of phosphate mining industry. 

In addition, a detailed storage management for multiproduct 

tanks was also considered. The proposed MILP model aims to 

maximize the overall utilization rate of the main pipeline for 

phosphate slurry transportation, by considering the constraints 

related to production, transport, storage capacity, and 

satisfaction of customers' demand requests. The proposed model 

was evaluated using a group of 10 instances varying in 

complexity. The obtained results show that the model is able to 

provide the optimal solution for all instances in a reasonable 

amount of time. 

Future work will concentrate on considering all the other 

operational constraints in the pipeline network of the OCP’s 

supply chain, such as the introduction of a new transfer 

secondary pipeline between storage tanks at the terminal station. 

Later, a heuristic approach should be developed for solving 

instances with longer planning horizon in future research. 
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