
Abstract – Nowadays, a large proportion of international trade relies on maritime transport. Hence, route optimization of cargo 

vessels is an essential planning problem. Safety is an important research area in maritime transportation. The last decade has seen 

a growing interest in considering safety aspects in routing problems. Safety is a crucial aspect and an all-time concern to any 

captain and this even prior the ship’s sailing. Therefore, there is a need to understand the models and methods used to consider 

safety in previous studies. This work presents a maritime-specific review of routing problems coupled with safety aspects, along 

with relevant examples of other transportation industries such as road, rail, and air. Our review highlights the need for decision 

support tools that can effectively manage multiple objectives, including safety-related objectives, in maritime routing problems. 

Keywords –Vehicle routing problem, Safety, Maritime transportation, Multi-objective optimization, Shipping.  

 
1 INTRODUCTION 

Nowadays, a substantial proportion of international trade is 

transported by sea. Therefore, the voyage optimization of 

vessels becomes essential. Before starting the navigation, one 

of the captain's concerns is selecting an efficient route with 

respect to many objectives. For example, fuel consumption and 

route duration are two critical objectives in voyage routing 

problems. In cargo ships, not only is the crew's safety essential 

but the safety of the ship's structure and cargo should be 

guaranteed. Hence, vessel route planning is a multi-

dimensional problem considering time, fuel consumption, and 

safety. The compromise between these objectives is a crucial 

key of a transoceanic voyage. The optimization of ship routing 

is dependent on vessel characteristics and weather factors. The 

safety issues for different vessel characteristics (e.g., size and 

load) arise with weather information such as wave size and 

direction, wind direction and strength.  

Vessel route optimization is one of the crucial problems in the 

maritime route plannings. Routing algorithms can play a 

crucial role in helping planners navigate the most cost-

efficient, energy-efficient, and safe routes possible. It can be 

obtained by taking into account factors such as distance, route 

time, fuel consumption and safety criteria, using weather 

conditions and vessel characteristics. The quality of the 

optimized route depends on the quality of the data on these 

factors as well as the level of the details and decisions, and the 

solution approaches. By using routing algorithms, planners can 

optimize their travel plans and reduce transportation costs, 

while also minimizing environmental impacts and promoting 

safety for crews, cargo, and vessel structure. The main purpose 

of this review is to investigate how safety is included in 

routing problems in maritime transportation industry coupled 

with some examples of such problems in other sectors 

including road, rail, and air. The route optimization problems 

are solved using a grid system, where the search area is 

divided into a grid of discrete cells. The latter is a network of 

connected nodes and arcs that indicate the precise location of 

features on a map (e.g., roads, railways, air routes, maritime 

routes). The grid system represents the connectivity and 

structure of the network, which can be used in routing 

algorithms for finding the best path between a start and end 

point in a network. Most cases of route plannings embedded 

safety considerations are multi-criteria planning problems 

finding the optimized route by determining the trade-off 

between the objectives using a weighted objective approach. 

The isochrone method developed by James (1957) was one of 

the first approaches for solving routing problems considering 

the weather forecast. Essentially, an isochrone represents a 

group of points on a map that can be reached by a ship starting 

from a single point and traveling in any direction within a 

specified time limit. The safety concern in vessel routing 

problems has gained increasing attention from maritime 

research communities over the years. In general, "safety" 

refers to the condition of being protected from danger, risk, or 

injury. The first thing captains must attend to before starting 

their navigation is safety at sea. Maritime navigation safety 

depends on the vessel's characteristics, the weather condition, 

and the navigators' skills. Hard and soft constraints are related 

to the safety of the vessel crossing the ocean. Hard constraints 

prevent navigating in areas that put the vessel in danger of 

capsizing, grounding, pirates, war, colliding with oil platforms, 

etc. On the other hand, soft constraints are restrictions that are 
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not strictly enforced but instead involve a penalty for not being 

satisfied. For instance, in the case of hurricanes, a vessel must 

keep a minimum distance to avoid capsizing, which is a hard 

constraint, while the soft constraint increases the distance to 

hurricanes as much as possible. Typically, a safer route might 

be a long one with higher costs related to fuel consumption. 

Hence, vessel route planning problems become complex as 

they involve multi-objective programming with conflicting 

objectives. These objectives integrate navigation safety with 

the related economic impact in terms of voyage duration and 

fuel consumption. Therefore, it is essential to balance different 

objectives so that the vessel's safety is guaranteed, and the 

optimized route is both cost and fuel effective. Moreover, the 

methodologies to solve these problems become complicated 

since finding a reliable and precise trade-off between the 

objectives is challenging. This paper aims to provide a review 

of the studies on vessel route planning problems coupled with 

safety considerations. The main focus of this review is to 

investigate the previous methods to deal with multi-objective 

vessel route optimization considering safety aspects. Although 

the review is mainly for the maritime industry, we also include 

some studies in the road, railroad, and air transportation sectors 

to expand the understanding about safety and how it is 

modelled in routing problems.  

2 THE BACKGROUND REVIEW 

This paper provides a review of how safety concerns are 

addressed in routing problems, including the methods used to 

solve them. For this purpose, we developed a set of research 

questions to be addressed in this review: 

• What kinds of safety concerns were addressed in 

previous works? 

• How are these safety issues modelled and included in 

routing problems? 

• What methodologies are proposed to find the trade-off 

between multi-objective routing problems? 

• What methods are developed in multi-criteria route 

planning problems? 

Although we acknowledge the potential operational safety 

issues associated with traffic and the passage of the ship 

through the canals, our primary focus is directed towards open 

map maritime routing problems. Our literature search yielded 

53 relevant papers, which underwent a rigorous screening 

process resulting in the selection of 28 papers for inclusion in 

our review. 

2.1 Maritime routing problems associated with safety 

In adverse weather conditions, a ship may encounter different 

dangerous phenomena that put the vessel at risk of capsizing or 

damaging cargo, equipment, and persons on board. These 

dangerous phenomena vary from one vessel to another 

depending on stability parameters, hull geometry, ship size and 

ship speed. However, in vessel route planning problems, 

various safety issues should be considered. IMO guideline 

(IMO, 2007) adopted the safety regulations related to a set of 

safety aspects as follows. The surf-riding and broaching-to 

phenomena are situations associated with wave and ship speed. 

They may occur when the vessel's speed is the same or less 

than the wave's speed, causing the vessel to heel at a 

significant angle or suddenly change its heading. As a result, 

the vessel would be in danger of capsizing. This phenomenon 

may happen if the vessel encounter angle is in the range [135o, 

225o] and the vessel speed exceeds a specific value (IMO, 

2007). Successive high-wave attack is the probability of a 

vessel to be encountered by a group of dominant waves with 

the same speed. It would induce the danger synchronous 

rolling motions, parametric rolling motions, intact stability 

reduction or combination of various phenomena (IMO, 2007). 

Synchronous rolling motion happens when the natural rolling 

period of a ship is the same as the encounter wave period in 

following and quartering seas. The synchronization between 

the ship's rolling period and the wave period can result in a 

back and forth rolling motion that can cause instability and 

increase the risk of capsizing. Parametric rolling motions may 

arise based on the vessel's position on the wave crest and wave 

trough, which puts the vessel in danger of a large heeling 

angle, subsequently increasing the risk of capsizing. It occurs 

when the encounter period equals or is half the rolling period. 

The aforementioned phenomena have been derived from the 

IMO guideline document (IMO, 2007). Depending on the 

related safety concern, these safety issues are affected by the 

vessel’s speed, wave height, wave period, and the encounter 

angle between waves and the vessel’s direction. When these 

safety aspects are combined, they represent both non-

dangerous and dangerous zones that are limited by vessel and 

weather data. The terms “dangerous zone” and “non-dangerous 

zone” refer to the hard and soft constraints, respectively. 

Moreover, vessels have six motion behaviors in the ocean, 

including three linear motions along longitudinal, transverse, 

and vertical axes and three rotational motions along these axes. 

The theory behind these behaviors is referred to as seakeeping 

characteristics in the vessel industry (Pennino, 2020). Ship 

speed is one of the most critical factors affecting vessel safety 

when it comes to controlling safety issues related to ship's 

motions. Ship speed reduces in hazardous weather due to the 

added resistance introduced by waves, wind, and ship motions. 

The interaction between the ship's hull and the surrounding 

water leads to additional resistance to the ship's movement, 

known as ship added resistance. The ship's propulsion system 

must overcome the added resistance to its forward movement 

caused by this interaction. Environmental conditions and wave 

actions are generally the causes of added resistance that can 

affect a vessel’s speed and fuel consumption. A background 

review of previous studies in maritime research that considered 

safety aspects in routing problems is provided in this section. 

The Multi-criteria evolutionary weather routing algorithm 

(MEWRA) is an evolutionary algorithm that uses Pareto 

optimization to find the optimal path concerning multiple 

conflicting criteria (Szłapczyn, 2009). Regarding weather 

routing, this algorithm determines an optimal route that mainly 
takes into account weather conditions, fuel consumption, and 

safety. Genetic algorithms and swarm optimization are two 

evolutionary methods used in MEWR algorithms to find the 

best path. These techniques evaluate potential routes based on 

how well they meet the criteria. Swarm optimization (Kennedy 

and Eberhart, 1995) is a technique that involves a population 

of candidate solutions, referred to as particles, exploring the 

search space to find the optimal solution. The particles are 

affected by their own previous experiences as well as the 

experiences of other particles in the swarm. The ultimate goal 

is to converge to the best solution by combining the 

information gathered from the individual particles with the 

collective knowledge of the swarm. Krata and Szlapczynska 

(2012) developed a MEWR algorithm to find the optimized 

route where time, fuel consumption and safety index were 

minimized. In this study, the safety hard constraint was related 

to the IMO guideline (2007) described earlier. To account for 

soft safety constraints, the authors introduced a safety index. 

This index was calculated based on dangerous and non-

dangerous zones as in IMO guideline (2007). The safety index 



 
was defined as the ratio of the non-dangerous area to the sum 

of both areas. In earlier work, with respect to the studied safety 

in Krata and Szlapczynska (2012), Szlapczynska (2015) 

considered static (time-independent) constraints alongside 

dynamic (time-dependent) ones. The static constraints referred 

to the areas that must be excluded from the passage (e.g., the 

location of pirates), while the dynamic constraints were based 

on weather data that could change the navigation during route 

planning period. One of the methods dealing with multi-

objective shortest path problems is the Martins’ labelling 

algorithm introduced by Martins (1984). Martins’ labeling 

algorithm is a technique for determining the shortest path 

between two nodes in a graph with non-negative edge weights. 

The approach involves assigning a label to each node that 

represents a potential path from the starting node to the node in 

the graph. Each label includes details about the path's cost in 

relation to the problem's objectives or criteria. The algorithm 

continually updates the node labels iteratively until it identifies 

the shortest route to the destination node. In each iteration of 

this algorithm, two labels are defined: permanent and 

temporary. The algorithm chooses the next node to be visited 

through a depth-first search strategy among all the sets of 

temporary labels and converts it to a permanent one if it is 

non-dominated. Then all the temporary labels of its successors 

receive the information contained in this label. One of the 

applications in this field is presented by Fabbri and Vicen-

Bueno (2019). They proposed a multi-criteria vessel routing 

problem that balances time, ship navigation added resistance 

and navigation safety/risk. The solution approach was based on 

providing a set of Pareto dominant solutions using Martins’ 

labeling algorithm. The authors considered IMO safety 

measurement as studied by Krata and Szlapczynska (2012). 

They chose a strategy that involved removing the areas where 

navigation might be unsafe or risky while taking into account 

ad hoc constraints that might lead to a smaller solution space.  

Veneti et al. (2017) presented a nonlinear integer programming 

model to minimize fuel consumption and safety risk in vessel 

route planning where travel time was constrained. They 

propose a new labeling algorithm to solve the problem and to 

find a set of Pareto optimal solutions. In this algorithm, each 

edge of the network included three costs: fuel consumption, 

travel time, and safety risk. The algorithm procedure used was 

identical to Martins' labeling algorithm, with one exception: 

the node search strategy. They proposed a node search strategy 

that is random, in contrast to Martins' labeling algorithm, 

which employs a systematic search strategy. The safety 

formulation was applied as both soft and hard constraints. On 

one hand, the hard constraints were applied according to IMO 

guidelines (IMO, 2007) as described earlier, except that they 

only included parametric rolling, and surf-riding and 

broaching-to to construct the dangerous zone. On the other 

hand, the soft constraints were based on historical data in 

which the safety risk was formulated as the probability of 

accidents multiplied by the severity of its consequences for 

each arc in the network. Krata and Szlapczynska (2018) 

provided ship routing as a multi-objective optimization 

problem solved by the MEWRA to provide a set of Pareto 

optimal paths. The objectives included fuel consumption, 

voyage duration, and safety. The soft safety constraints 

referred to the non-dangerous zone, followed by synchronous 

rolling, parametric rolling, surf riding and broaching-to, 

according to IMO guidelines (IMO, 2007). The hard safety 

constraints were based on the dangerous zones restricted by the 

aforementioned safety phenomena. Zaccone et al. (2018) 

presented a dynamic solution approach to minimize fuel 

consumption as a single objective. It also considered the ship’s 

six motions based on seakeeping criteria (as described earlier) 

as hard safety constraints. The six ship’s motions were 

constrained by the acceptable range that it could get. The paper 

mainly focused on optimizing the fuel consumption and the 

ship speed profile coupled with ship propulsion performance 

and hydrodynamic response of the vessel to different weather 

and sea conditions, such as wave height and wind speed. 

Padhy et al. (2008), discusses an approach to weather routing 

of ships in the North Indian Ocean that prioritizes safety by 

controlling vessel speed according to seakeeping criteria. The 

author assigned weights to the edges of the graph and applyed 

Dijkstra's algorithm to find the minimum time route between 

two neighboring nodes. The weights were defined as the time 

to travel between two neighboring nodes where the speed was 

determined based on the vessel's calm water resistance and 

mean added resistance obtained from weather data. Pennino et 

al. (2020) used Dijkstra’s algorithm to optimize ship routing 

by maximizing the vessel's Seakeeping Performance Index 

(SPI). The SPI is used to measure how efficiently a vessel can 

operate in the sea. It is calculated by producing a single 

numerical value that represents the overall seakeeping 

performance of the vessel based on five reference criteria: 

Root Mean Square (RMS) of pitch amplitude, RMS of vertical 

acceleration at forward perpendicular, Motion Sickness 

Incidence (MSI), Slamming, and Green water probabilities. 

Challenges may arise in optimizing vessel routing when 

dealing with uncertain factors such as weather, sea conditions, 

and vessel performance. Although classical state-of-the-art 

models are considered a satisfactory method, in practice, they 

are affected by uncertainty in weather data. Vettor et al. (2020) 

developed a multi-objective metaheuristics (MOMH) approach 

considering uncertainty in weather conditions. In this paper, 

achieving accurate weather forecasts was challenging, which 

had an impact on the quality of the results. In the short term, 

they evaluate the dangerous situations to measure safety risk 

followed by a sea state scatter diagram. The scatter diagram 

shows how different sea conditions are distributed and the 

likelihood of encountering waves of different heights and 

periods at a specific location. Vettor et al. (2020) used a 

Gaussian probability density function to calculate this 

likelihood and developed a probabilistic model based on the 

Gaussian distribution to assess the navigating safety risk in 

rough seas. They identified which portions of the likelihood 

corresponded to unsafe wave conditions based on established 

seakeeping criteria. In the long run, weather routing was 

adopted with a combined objective function that considers 

both time and safety risk. This objective function was 

formulated by multiplying the safety risk by the ratio of the 

time required to travel between neighboring nodes to the total 

voyage time. By combining these two factors, the proposed 

approach aimed to optimize vessel routing for both efficient 

travel time and safe navigation.  

Overall, the above papers address the integration of safety, 

fuel, and time in maritime routing problems. These criteria 

affect the constraints or objective functions depending on the 

situation. Regarding safety concerns, different dimensions 

have been studied and formulated in vessel routing problems. 

These dimensions can be referred to the IMO guidelines, 

seakeeping criteria and other safety issues investigated 

previously. However, including all the safety issues 

simultaneously, besides other objectives (fuel consumption and 

route time), remained unexplored. Hence, there is a need to 

include all safety aspects in vessel routing problems to 

comprehensively ensure safety regarding cargo, vessel 



 
structure, and crews/passengers during navigation. Given that 

incorporating safety-related objectives can increase the 

complexity of determining objective weights, our review 

emphasizes the necessity for advanced decision support tools 

that can effectively manage multiple objectives in maritime 

routing problems. 

2.2 Road routing problems associated with safety 

"The number of deaths on the world's roads remains 

unacceptably high, with an estimated 1.35 million people 

dying each year." (World Health Organization, 2018). This 

statement shows the importance of safety on road. Including 

safety concerns in road routing problems can improve accident 

prevention by taking into account the risk of crashes. There is 

a noticeable difference between routing problems in road and 

maritime transportation. In road routing, the network is 

generated using pre-constructed roads whereas such a concept 

is not applicable in maritime routing problems. Moreover, the 

available data in the road industry may include road 

characteristics (e.g. road curvature, speed limit). In the 

maritime sector, the most critical aspect is considering weather 

data to ensure the safety of the ship's structure, crew, and cargo 

and control the vessel’s speed for safety purposes. On the other 

hand, when it comes to road routing, weather data is usually 

not regarded as the most crucial aspect. This is because road 

vehicles are typically better prepared to handle severe weather 

conditions, and the effect of weather on road safety is 

frequently less serious than in the maritime industry. In road 

routing industry safety can be divided into two main areas: 

road safety and traffic safety. The concept of "traffic safety" 

involves strategies to ensure a safe and efficient flow of traffic 

on roads and highways. On the other hand, the term "road 

safety" refers to the general safety of roads and highways, with 

an emphasis on avoiding accidents and minimizing the crash 

risk to those using the roads, including drivers, passengers, and 

other users. A background review has been done on road safety 

and traffic safety in the following sections.  

In the road transportation industry, there is a negotiation 

between shippers and carriers about how the payments for 

transportation should be based on. The significant problem is 

that the shortest path may be based on something other than 

the drivers' preferences due to the contractual distance-based 

payments. For instance, while a company prioritizes shorter 

road lengths to minimize costs, a transporter may prioritize 

faster travel times to maximize payment, potentially resulting 

in longer routes due to road speed limits. Hence, finding the 

best routes based on the user's preferences becomes 

challenging. Besides, road safety is one of the crucial aspects 

that any driver must consider. It can be evaluated by historical 

data and individual users' judgments (Sarraf and McGuire, 

2020) and also be measured based on road characteristics such 

as hilliness and curvature (Rönnqvist et al., 2017). In this 

regard, Flisberg et al. (2012) used the Dijkstra algorithm to 

find the minimum cost route where the transportation cost was 

based on road characteristics and road safety. The road 

characteristics and safety were formulated as a weighting of 

the road features (e.g., road class, road width, or speed limits), 

but finding proper weights was challenging. Hence, inverse 

optimization was proposed to find suitable weights for 

different attributes to generate the routes based on the drivers' 

preferences. This paper contributes to safety by combining 

path cost and safety to find a more efficient routes for drivers 

and customers. By taking into account factors such as road 

class, traffic flow, and road safety, the proposed method can 

help identify potential risks and mitigate them, leading to 

improved overall safety on the road. Considering the same 

safety aspects, Rönnqvist et al. (2017) developed the 

Calibrated Route Finder (CRF) using inverse optimization. 

CRF is a distance measurement system and route selection tool 

that balances conflicting objectives, including quantitative and 

qualitative factors. An inverse optimization approach was 

presented to find the trade-off between various objectives 

concerning road characteristics that included the same safety 

attributes in Flisberg et al. (2012) and drivers' preferences 

through the best practice routes generated by the users.  

Akay (2020) implemented a geographic information system 

(GIS)-based network analysis method to find the optimum 

route in the forestry transportation industry. GIS is a computer-

based system for visualizing and analyzing geographic 

information associated with a specific location or region of 

research (Lü et al., 2019). It also assists users in inserting 

problem-related features and analyzing patterns and 

relationships with specific data. The paper proposes two 

optimization scenarios for determining the best route: one 

focuses solely on transportation costs related to truckload 

capacity and driver hourly pay, while the other takes into 

account safety considerations to determine the safest route. 

They dealt with safety as a risk function by analyzing a range 

of factors that contribute to the likelihood of accidents 

involving logging trucks. The paper identifies several factors 

that may affect the safety of a given route, including road type 

and conditions, traffic volume, and accident history. To assess 

the safety risk of each potential route, the paper assigns 

weights to each of these factors based on their relative 

importance. The findings revealed that transportation costs rise 

when the route's safety is considered.  

The Floyd-Warshall algorithm is a well-known method that 

determines the shortest route between any two vertices in a 

weighted graph, even when negative edge weights are present. 

The difference between this algorithm and the Dijkstra 

algorithm is in the free nature of the edge weights. The 

problem with this algorithm is the possibility of negative 

cycles which lead the solution to incorrect results or go into an 

infinite loop. Moreover, in optimization problems, fuzzy logic 

is one of the algorithms that deals with uncertainty and 

provides approximate solutions rather than exact ones. 

Accordingly, it does not return true or false to a statement; 

instead, it specifies a certain range (Novák, 2006). Regarding 

the above description, Pešić et al. (2020) developed the Fuzzy 

Floyd's algorithm to optimize transportation routing through 

bi-objective programming concerning road safety and travel 

time. The authors of the paper utilized a two-criterion Fuzzy 

Floyd's algorithm to determine the optimal route while 

considering safety and travel time as the two criteria. They 

used a questionnaire answered by ten experts to obtain a safety 

indicator based on road characteristics such as the number of 

junctions, road width, road equipment, and pavement quality. 

The scores obtained from the questionnaire were averaged to 

derive the safety indicator. The authors used fuzzy techniques 

to handle the uncertainty associated with travel time and safety 

indicators. They used triangular fuzzy numbers to represent 

three possible values for an uncertain parameter, which 

allowed them to consider multiple possible values for the 

travel time and safety indicators. To convert the fuzzy triplet 

numbers into a single value, they used an alpha-cut method 

(Kaufman and Gupta's (1985) that involves setting a threshold 

or level of membership in the fuzzy set. Values in the fuzzy set 

with a membership degree greater than or equal to this 

threshold are included in the alpha-cut set, which is a non-

fuzzy set that represents a subset of the original fuzzy set. 



 
In recent decades, traffic accidents have become a growing 

concern, leading to an increase in both traffic safety issues and 

crash risk exposure. To address this issue, Chandra (2014) 

developed a multi-objective shortest path (MSP) algorithm 

based on the median shortest path problem to simultaneously 

minimize travel time and car accident probability. The author 

proposed a safety indicator to predict the likelihood of a car 

crash based on sparse traffic, dense traffic, and an intersection 

collision. Sparse traffic occurs when there are few vehicles on 

the road. In contrast, a dense traffic condition refers to a 

situation where many vehicles are on the road. The median 

shortest path problem is based on graph theory, primarily 

introduced by Current (1987). This is a statistical method used 

to estimate the typical distance between pairs of nodes in a 

network. In a network, the shortest path between two nodes is 

the path with the fewest number of edges. The median shortest 

path is the value that divides the distribution of shortest path 

lengths into two equal parts, meaning that half of the shortest 

paths are shorter than the median and half are longer. Omidvar 

et al. (2017) presented two mixed-integer linear programming 

(MILP) formulations for the problem of routing and 

scheduling of vehicles while considering crash risk. The crash 

risk was determined using historical crash records and was 

used in the first model. The first model included two objective 

functions, travel time delay and crash risk. They used the 

weighted method to deal with multi-criteria problems in which 

the weights were determined by decision maker’s judgment. 

The authors solved a second optimization model that considers 

each route as an independent path. In this phase, the optimal 

speed on each arc is modified and the departure times of each 

vehicle from each node are rescheduled accordingly. They 

used Simulated Annealing (SA) algorithm to solve the two 

stages iteratively in a shorter amount of time. This method 

begins with a random solution and tries to find a better solution 

with minor changes (Brooks and Morgan, 1995). Sahnoon et 

al. (2018) established a GIS-based approach using the Dijkstra 

algorithm to deal with travel time and crash risk. This study 

modeled the safety risk using a probabilistic approach based on 

historical data on fatal and injury crashes. The proposed cost 

function combined time and safety risk based on the weighted 

method. Then, the authors surveyed different scenarios of the 

weights for a case study in the United Arab Emirates. 

Guo et al. (2020) developed a safe transportation routing 

model as a bi-objective problem, considering travel time and 

safety risk. The safety risk was associated with factors such as 

road geometry, traffic volume, and population density. The 

authors proposed two different solution algorithms based on 

different assumptions. The first approach assumed that there 

exists at least one safest path among the set of shortest paths, 

and the second approach assumed that the safest path may not 

be a part of the set of shortest paths. To solve these two 

problems, the authors used the A-star algorithm for the first 

approach and designed the GA-star algorithm for the second 

approach, which combines a genetic algorithm with the A-star 

search. A-star is considered to be one of the best pathfinding 

algorithms due to its ability to find the shortest path quickly 

and efficiently in a graph with weighted edges. The difference 

between this algorithm and Dijkstra is that A-star algorithm 

includes a heuristic function to direct the search towards the 

destination node. In GA-star approach, the edges of the 

shortest paths were removed from the graph, then the 

algorithm would find the safest path in the second shortest path 

set. Sarraf and McGuire (2018) proposed a data-driven 

approach to find the safest path in vehicle routing problems. 

Given that the route-finding method was based on the Dijkstra 

algorithm, the objective function aimed to minimize the crash 

risk where the shortest path was neglected. Methodologies for 

calculating crash risk are essential safety criteria in route 

planning problems. Kingsbury (2016) provided two 

methodologies to quantify the crash risk to be minimized in the 

vehicle routing problem, besides other factors such as travel 

time and distance. The safety risk determined in the first model 

aimed to predict the likelihood of crashes relying on the 

historical data within the regression model. On the other hand, 

the second method estimated the crashes based on regression 

algorithms that correlate road characteristics with the crash 

performance indices. Furthermore, the weighted multi-

objective model was optimized using the Dijkstra algorithm. 

They provided a set of weight settings for the problem through 

a sensitivity analysis.  

While there are already established methods for assessing risk 

factors such as road geometry and traffic volume, these models 

may not be enough to capture the complex and dynamic nature 

of safety risks. There is a need for more advanced models that 

can account for factors such as driver behavior, weather 

conditions, and vehicle characteristics, among others. In 

addition, there is a research gap in considering the mentioned 

safety risk with historical data that lead the safety model to be 

more accurate in vehicle route plannings. Another important 

gap is optimizing fuel consumption that can be included in 

traffic problems. This is a crucial aspect to consider as it not 

only benefits the environment but can also help reduce 

vehicles operating costs. 

2.3 Railroad routing and scheduling problems associated with 

safety 

Unlike the previous routing problems where typically involved 

balancing both soft and hard constraints, railroad routing 

optimization incorporates safety concerns as hard constraints 

in the proposed models. In the rail transportation industry, 

safety regulations impose a minimum distance between trains 

travelling in the same direction. This requirement translates 

into a “minimum headway” between two consecutive trains, 

which depends on various factors such as the length of the 

specified track, train speed and length (Samà et al., 2017). For 

each pair of adjacent trains on the same track, the time gap 

between them should be greater than or equal to a safe 

headway time. By including this constraint in the optimization 

problem, the routing algorithm can ensure that the solution 

obtained satisfies such safety requirement. Bożejko et al. 

(2017) proposed a modification of Dijkstra algorithm to find 

the shortest path in the cargo rail transportation industry. The 

safety criteria constrained the model to control the safe 

headway time and avoid collisions. The proposed method 

involves using an estimation of minimal arrival time to each 

node, and a set of unvisited nodes. The algorithm updates the 

estimation of arrival time for each node and selects the next 

node to visit based on the minimum estimated arrival time. The 

main steps of the modified algorithm are similar to the original 

Dijkstra algorithm, but the difference occurs in the way the 

estimation of arrival time is updated. Samà et al. (2016) 

proposed a MILP model to minimize train delays with respect 

to minimum headway time between trains. Given the lengthy 

computational time, the author devised a novel approach based 

on the relaxation of some constraints in order to produce a 

good quality lower bound for optimization. Then the lower 

bound was transformed by a constructive metaheuristic 

approach into a feasible solution to find a good-quality upper 

bound. In another work by Samà et al. (2017), a MILP model 

was developed for the minimum consecutive delay measured 



 
by makespan minimization. The paper focuses on developing 

an optimization model that can handle delays and disruptions 

in the railway system. The term “consecutive delay” referred 

to the total amount of delay that occurs in each time window in 

which a train is scheduled to pass. The aim was to minimize 

the consecutive delay, which represents the total amount of 

delay that occurs during the scheduled train journeys. They 

used makespan minimization to find a schedule and route for a 

set of trains that minimizes the time it takes for all trains to 

complete their routes. In addition, the safety regulation was 

applied as a constraint to impose a minimum separation 

between two consecutive trains, the same as in previous 

studies. The solution method was based on the branch-and-

bound algorithm. With respect to the minimum safe headway 

time, Meng and Zhou (2014) proposed a parallel technique 

algorithm to find the optimized path. The objective function 

was to minimize the total cost of the train schedule, which is 

calculated as the weighted sum of train delays, waiting times, 

and infrastructure usage costs. Then the solution was obtained 

through a set of scenarios for the weights. The authors used a 

Lagrangian relaxation to relax the constraints related to train 

sequencing, essentially allowing trains to be violated to some 

extent for faster computation. The authors developed a DSS 

software program that creates train schedules for railway 

systems. Creating these schedules involves a lot of complex 

calculations, which can be time-consuming. To speed up the 

process, the authors used a tool that allowed to distribute the 

work of creating train schedules across multiple cores in the 

processor of the system. In another study (Meng et al., 2016), 

the authors focused on the stochastic environment when an 

incident affects track capacity and running timetables. Then 

the dispatchers need to reschedule the trains. The objective 

function was replaced by the expected total delay time to 

address the uncertainty situation. Although previous works 

concentrated on the safe distance between trains, there are 

other safety requirements to guarantee the safety of the trains. 

Xu et al. (2017) developed an Integer Linear Programming 

(ILP) model aiming to minimize the train deviations between 

the trains' arrival time at the destination. They model was 

subjected to the trains' minimum safety headway. In this work, 

the train's departure and arrival safety headway times were 

considered in both the same and opposite directions to ensure 

that the trains could not cross over each other in the same 

direction. Another vital criterion is avoiding head-on collisions 

while crossing trains in two-way traffic flow by switching 

tracks. In addition, rear-end accidents can happen when two 

trains travel in parallel but one of them enters to another track 

at the next intersection. All situations, as mentioned earlier, 

have been added as constraints in Xu et al. (2017) approach. 

Based on the reviewed literature, it is essential to consider 

multiple factors in train routing and scheduling. One such 

factor is the duration that trains wait in stations before 

departure, along with delay time, arrival time, and the number 

of delayed trains. These factors act as objectives that can be 

addressed through multi-objective optimization techniques. 

Moreover, train routing and scheduling can be significantly 

impacted by hazardous weather conditions, including heavy 

snow, ice, rain, flooding, high winds, or extreme heat. These 

severe weather conditions can create safety risks and make it 

challenging or even impossible for trains to operate safely but 

their impact on rail routing problems has not been studied. 

2.4 Aircraft routing problems associated with safety 

Safety is crucial in Air Transportation Systems (ATSs) due to 

its destructive effects on human life since the consequences of 

accidents can be catastrophic and potentially fatal. With the 

rapid expansion of flight use, developing advanced decision 

support tools is critical to improving Air Traffic Management 

(ATM) systems, particularly when considering the transport's 

safety and capacity. Aircraft corridors limit aeroplane 

trajectory, which distinguishes air transportation problems 

from maritime applications. However, aircraft routing 

applications are similar to maritime transportation problems, 

which tremendously depend on weather data, and there is 

flexibility in the selected trajectory. Accordingly, severe 

weather conditions put the aircraft in a dangerous situation. 

These effects include the localized region of strong wind shear, 

violent updrafts and downdrafts. Strong wind shear can 

damage the aircraft's body, while violent updrafts and 

downdrafts cause the pilot to lose control of the aircraft due to 

the considerable change in altitude. Some examples of aircraft 

routing problems associated with safety concerns are provided. 

In the situation of facing a thunderstorm, the only way to 

prevent the aircraft from losing control or getting damaged is 

to make a detour path around it. Bokadia and Valasek (2001) 

developed an A-star search to optimize route time from the 

origin to the destination. This research only considered hard 

safety constraints associated with severe weather. The A-star 

heuristic cost function has two components: the first one is the 

distance travelled by the flight from the starting point to the 

reached node, and the second one is the estimated path cost 

from the reached node to the destination. It determines the path 

by a straight line from the start point to the end point. If there 

is a thunderstorm on the path, this line would be deviated to 

detour. The information about the position and intensity of the 

thunderstorm is taken from the radar image. The areas with 

intensities above a particular threshold would be considered 

inaccessible zones. Air traffic flow management (ATFM) is a 

well-known topic in the air transport industry. ATFM is the 

collaborative process of managing air traffic flow to provide a 

safe and cost-effective routing to ensure an appropriate balance 

between air traffic demand and Air Traffic Service (ATS) 

capacity. Furthermore, maintaining a suitable and safe 

horizontal distance between aircraft is critical in aircraft traffic 

flow. Prete and Mitchell (2004) developed the Flow-Based 

Route Planner (FBRP) navigation system to find shortest route 

while respecting three safety constraints: turn and curvature, 

avoiding hazardous weather and maintaining a minimum 

distance from other aircraft. In this study, first, the shortest 

path is determined using the A-star search algorithm, such that 

areas with a specific intensity threshold are avoided, and a safe 

distance to other planes is respected. Second, given the 

determined route, a simplification approach reduced the 

complexity of the turning and curvature of the route to find a 

safer path near the original one. 

Although previous works concentrated on the horizontal 

distances between planes, there are other dimensions to 

consider in separating the flights. Yang et al. (2020) proposed 

a MILP model to deal with the flight arrival and departure 

schedules in a 4-dimensional trajectory (3-D space and time) 

by doing so. It was based on a stochastic optimization scheme 

to address uncertain flight arrival time and weather conditions. 

To deal with uncertainty, severe weather was formulated as a 

probability function, and expected arrival time was considered. 

The severe weather probabilistic approach involved analyzing 

historical weather data to estimate the probability of certain 

weather conditions at specific times and locations. Heuristic 

techniques were used to reduce the computational complexity 

and solve the model in a timely manner. To ensure safe 

routing, constraints were formulated to ensure at least one-



 
dimensional minimum safety separation between aeroplanes in 

the latitude, longitude, or altitude axis.  

A research gap among the review papers is the development of 

more comprehensive risk assessment models that take into 

account a wider range of potential hazards and their likelihood 

of occurrence. Hence, it is crucial to focus on developing risk 

assessment models that are more inclusive and accurate, 

incorporating data from a range of sources, such as weather 

radar, satellite imagery, and real-time flight data. This would 

enable more effective identification of potential hazards and 

the development of safer and more efficient flight routes. 

3 CONCLUDING REMARKS 

The above papers highlight the importance of considering 

safety, fuel consumption, and travel time in transportation 

routing problems. In the maritime sector, safety should adhere 

to international guidelines provided by the IMO. Vessel 

characteristics and weather data are required to assess 

compliance with these rules. While some safety concerns have 

been studied, there is a need for more comprehensive research 

to incorporate all safety aspects in maritime routing problems, 

ensuring the safety of vessel, cargo, and persons on board. For 

road routing problems, advanced models should be developed 

to capture the complexity of safety risks, including driver 

behavior, weather conditions, and vehicle characteristics. In 

railroad applications, research should focus on minimizing 

delay time and exploring the impact of weather conditions on 

routing and scheduling to improve efficiency and safety. 

Similarly, in the aircraft industry, developing advanced models 

that account for safety distance dimensions and weather 

conditions is necessary to optimize fuel consumption and 

improve safety during routing.  

A summary of the surveyed papers is provided in Table 1. 

Heuristic algorithms have been widely used in recent papers 

due to their efficiency in solving complex routing problems. 

Heuristic algorithms are popular due to their ability to provide 

efficient solutions within a reasonable time frame. These 

algorithms are well-suited for addressing large-scale problems, 

and they can be easily adapted to different transportation 

modes. In practice, heuristic algorithms are often utilized in 

conjunction with optimization-based algorithms, which offer 

an optimal solution but can require substantial computational 

resources. Selecting the most appropriate algorithm depends 

on the unique problem and the optimization objectives. In 

situations where safety is a top priority, pathfinding algorithms 

like Dijkstra and A* might be more favorable than heuristic 

algorithms. Conversely, in situations that entail a vast search 

space, evolutionary algorithms may yield better results than 

other algorithms. The reason is because of their capability in 

maintaining a diverse range of candidate solutions, conducting 

a global search of the entire search space, and adjusting to 

changes in the search space. These features enable 

evolutionary algorithms to explore multiple regions of the 

search space and prevent them from getting trapped in local 

optima, potentially leading to finding the optimal solution. 

Furthermore, in the summary table, we have presented the 

decision-making approaches utilized for balancing multiple 

objectives in the context of multi-objective problems. It was 

observed that among the selected papers, the most prevalent 

approach utilized for this purpose was the subjective judgment 

of the decision maker. 

Overall, enhancing the accuracy and reliability of safety 

models in routing problems is essential for improving 

transportation safety. By prioritizing safety and investing in 

research to improve these models, we can reduce the 

likelihood of accidents, injuries, and fatalities, benefiting 

everyone who uses and depends on transportation systems. The 

reviewed papers emphasize the significance of using advanced 

algorithms to optimize routing in transportation systems. By 

continuously improving and implementing these algorithms to 

real-world problems, it is possible to enhance the effectiveness 

and safety of transportation networks. 
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