
  

Abstract  

 

Power transformers (PTs) play a crucial role in power generation, transmission, and distribution systems. Monitoring the health of 

these transformers is essential to ensure an uninterrupted power supply. Dissolved Gas Analysis (DGA) is a widely used 

technique to examine the condition of PTs. However, predicting dissolved gas content in PTs is challenging due to non-linearity, 

high dimensionality, and limited training datasets.  

This paper presents a novel approach to predict PT faults using the Support Vector Machine (SVM) algorithm based on DGA 

data. The proposed method employs SVM to achieve accurate and timely fault diagnosis, which is essential for preventing faults, 

as manual diagnosis is time-consuming and expensive. The real data does not include all the desired labels, so Gaussian 

simulation generates new data that provides all labels. The new data is generated using the Inverse Cumulative Distribution 

Function (ICDF) to convert the Gaussian samples to samples from the specified distributions.  

The proposed approach achieves a probabilistic output for the fault diagnosis of oil-immersed transformers, overcoming the 

limitations of traditional DGA methods that often provide inaccurate diagnosis results and cannot summarize the fault 

development rule inductively. The case study results demonstrate the effectiveness of the proposed approach in predicting PT 

faults. Furthermore, this paper contributes a new method that utilizes SVM based on DGA data, which can help maintenance 

managers detect faults accurately and promptly, contributing to the PT fault diagnosis field. 

Keywords – power transformer, dissolved gas analysis, fault diagnosis, support vector machine, machine learning. 

 

 

1 INTRODUCTION 

Power transformers are a strategic and significant investment 

that is designed to operate efficiently for several decades. The 

growing demand for electricity often exceeds predictions, 

which puts a strain on the equipment and causes malfunctions 

and failures. In recent years, the importance of power quality 

has been a widely discussed topic due to the increased use of 

renewable energy sources, distributed power generation, power 

electronics, and electric vehicles. Effective electricity 

transmission is crucial for ensuring the stability of the future 

power grid, and new approaches have been proposed to 

address these challenges. However, existing electricity 

networks were designed long ago, which leads to power 

transformers operating at or beyond their limits under 

capacitive loads. This highlights the importance of monitoring 

and maintaining the health of power transformers to avoid 

malfunctions and failures, which can lead to power outages 

and financial losses. Power transformers, mainly oil-immersed, 

offer high electric power management with a small size 

compared to dry-type transformers. They transport and 

distribute electrical energy point to point by voltage step-up or 

step-down. Still, their insulation often deteriorates due to the 
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high electric field in the high- and ultra-high-voltage electrical 

transportation system and environmental factors such as 

temperature, humidity, surface dust, and UV radiation. 

Therefore, to extend the lifetime of power transformers, it is 

critical to monitor their insulation conditions. The insulation of 

high and medium-power transformers is a critical factor that 

can impact their condition due to physicochemical reactions. 

This insulation comprises various components such as solid 

insulation parts, liquid insulation, and insulating oil. The most 

common parameters used for monitoring the condition of 

power transformer insulation are Dissolved Gas analysis 

(DGA), tangent delta, partial discharges, and insulation 

resistance. 

DGA is the most commonly used technique for monitoring 

power transformer insulation and can be performed online or 

offline. It analyzes insulating oil for the presence of specific 

key gases, which can indicate different types of insulation-

related problems. Various DGA techniques, such as the IEC 

ratio method, Doerenburg ratio method, Rogers’ ratio method, 

and Duval’s triangle method, use these gases in the form of 

ratios to analyze the data. 

However, traditional DGA methods have limitations in 

detecting subtle faults, and the diagnosis could vary among 

experts due to their dependence on subjective knowledge and 

experience. To overcome these limitations, artificial 

intelligence (AI) techniques, such as machine learning (ML) 

and pattern recognition, have been increasingly adopted in the 

power industry. AI techniques can enhance the accuracy and 

generalizability of power transformer fault diagnosis, reducing 

the risk of failure and improving the reliability and efficiency 

of the electrical power system. SVM is one of the classifiers 

used to solve power transformer fault classification problems 

and is proposed in this paper for condition monitoring and 

fault diagnosis of power transformers based on DGA data. 

This paper aims to highlight the importance of the effects of 

insulation in power transformers and how DGA and AI 

techniques can be utilized for accurate and comprehensive 

fault diagnosis. Section 2 provides a literature review to 

emphasize the contribution of this paper, and Section 3 

presents the study’s general framework, focusing on the 

dataset. Section 4 briefly introduces the SVM classifier used in 

the study, and Section 5 discusses the experimental results and 

model evaluations. Finally, Section 6 concludes the paper, 

emphasizing the effectiveness of the proposed SVM-based 

approach for power transformer fault diagnosis and its 

potential to improve the reliability and efficiency of the 

electrical power system. 

2 LITERATURE REVIEW 

Prognostic and Health Management (PHM) is an integrated 

technology that detects anomalies, diagnoses occurring 

failures, and predicts the future health state of a system to 

estimate its Remaining Useful Life (RUL). It was first 

proposed by the US Air Force (Timothy, F., et al., 2009; Losik, 

Ph. D, L., 2012). In recent years, data-driven prognostic 

studies have focused on determining the relationship between 

the monitoring data of systems and their health condition. 

Li et al. (Li, J., et al., 2016) presented an intelligent method for 

power transformers’ fault diagnosis based on selected gas 

ratios and Support Vector Machine (SVM). This method 

outperformed conventional ratio threshold-based methods. Wei 

et al. (Wei, X., et al., 2006) proposed a classifier using a back-

propagation neural network that showed strong learning 

capability and generalization in terms of higher accuracy of 

fault diagnosis than classic SVM methods. Guo et al. (Guo, Y. 

J., et al., 2007) implemented an improved radial basis function 

neural network for detecting power transformer faults. Fang et 

al. (Fang, J., et al., 2011) applied principal component analysis 

as a pre-processing procedure to enhance the data quality and 

achieved higher recognition accuracy than the former methods 

based on back-propagation neural networks only. 

SVM is a good candidate among different Machine Learning 

(ML) algorithms to be implemented in the fault diagnosis of 

power transformers. It overcomes the difficulties of small 

samples, the curse of dimensionality, local minimum, and 

overfitting. Although the vast amount of data can help to 

identify better schemes to detect hidden patterns among 

equipment faults and data, collecting transformer samples is 

still complicated, and the increases in the dataset's size pose a 

significant challenge in data management and computation 

time. It should be noted that the accuracy results of ML 

algorithms also depend on the dataset's quality, and most 

articles' original datasets considered are very few, meaning 

that data balancing techniques have been used, which exhibits 

a considerable bias on the algorithm's accuracy (Rao, U. M., et 

al., 2021). 

In recent years, various fault diagnosis techniques have been 

proposed, including the conventional key gas method, the ratio 

method, and the graphical representation method. However, 

the identification of the faulted location by the traditional 

method is not always an easy task due to the variability of gas 

data and operational natures. Recently, artificial intelligence 

techniques have been extensively used to develop more 

accurate diagnostic tools based on DGA data. 

Shintemirov et al. (Shintemirov, A., Tang, W., & Wu, Q. H., 

December 2008) proposed the Genetic Programming (GP) 

method for transformer fault detection. The fuzzy logic method 

is applied to three transformers to diagnose the fault by 

analyzing the dissolved oil based on fuzzy logic in Ref. 

(Flores, W. C., Mombello, E. E., Jardini, J. A., Rattá, G., & 

Corvo, A. M. , July 2011) The back-propagation neural nets 

described in Ref. (Sun, Y. J., Zhang, S., Miao, C. X., & Li, J. 

M., March 2007) can identify complicated relationships among 

dissolved gas contents in transformer oil and corresponding 

fault types. 

Intelligent techniques, such as artificial neural networks and 

evolutionary algorithms, have gained increasing attention due 

to their ability to simulate the behavior of living beings and 

make optimal decisions for solving complex problems. These 

methods are particularly effective in addressing problems that 

lack structural information and require a more general 

approach. One such problem is transformer fault diagnosis, 

which is challenging due to the high dimensionality and non-

linearity of the data. By leveraging these intelligent techniques, 

it is possible to develop accurate and efficient fault diagnosis 

models that can effectively analyze the complex data from 

power transformers. AI techniques can deal with complex and 

nonlinear problems and implement empirical risk minimization 

to minimize the error in the training data. At present, SVM has 

been applied successfully to solve fault classification 

problems. Overall, intelligent techniques have been widely 

used in transformer fault diagnosis with convincing results.  

3 METHODOLOGY 

The three major types of power transformer faults which can 

be reliably identified during a visual inspection are partial 

discharges, thermal overheating, and arcing (Duval, M., & 

DePabla, A., 2001). These faults can be classified as electrical 

or thermal, with partial discharges and arcing resulting from 

high electrical stress and thermal faults arising from abnormal 



temperature rises that cause deterioration of the insulation 

system. The abnormal temperature rises can be due to various 

factors such as overheating of conductors, short circuits, 

Foucault’s currents causing overheating of windings, loose 

connections, or insufficient cooling. The fault types and codes 

addressed in this paper are presented in Table 1. 

Table 1. DGA fault types and dataset distribution  

Fault Types Acronyms Label 

Low energy discharge LD 0 

High energy discharge HD 1 

Partial discharge PD 2 

Low thermal faults  LT 3 

Medium thermal faults  MT 4 

High thermal faults  HT 5 

 

In a power transformer, gas formation occurs due to two 

primary causes: electrical and thermal stresses. Each fault type 

affects the oil or paper differently and produces varying 

amounts of dissolved gas, with the quantities being more or 

less significant depending on the severity of the fault. The 

nature and proportions of the gases generated provide valuable 

information on the type and intensity of the stress, as well as 

the affected materials. For instance, when an electric arc 

discharge takes place, significant amounts of hydrogen and 

acetylene are produced, with minor quantities of methane and 

ethylene. Acetylene typically accounts for 20% to 70% of the 

total hydrocarbons, while hydrogen ranges from 30% to 90%. 

Carbon dioxide and carbon monoxide may also be formed if 

cellulose is present at the fault site, and in some cases, the oil 

may carbonize. On the other hand, thermal faults result in the 

degradation of oil and paper. Overheating of the oil produces 

ethylene and methane, along with small amounts of hydrogen 

and ethane. If the fault is serious or involves electrical 

contacts, traces of acetylene may also form. When thermal 

faults attack cellulose, large quantities of carbon dioxide and 

carbon monoxide are produced. Understanding the types and 

amounts of gases produced in each type of fault is crucial for 

accurate fault diagnosis and timely maintenance of power 

transformers. 

The conventional gas ratio methods use key gas ratios for fault 

diagnosis. In this paper, we used Doernenburg’s ratio method 

to extract the fault labels from the actual data that General 

Electric provides.  

The Doernenburg ratio method was one of the earliest 

techniques developed to analyze dissolved gases in 

transformers. Initially introduced in 1974, it aimed to evaluate 

the three primary types of transformer faults. Table 2 (IEEE 

Guide for the Interpretation of Gases Generated in Mineral 

OilImmersed Transformers, 2019) summarizes the 

Doernenburg ratios associated with each fault type and 

corresponding diagnostic interpretations. This method is 

typically employed when the concentration of one of the four 

gases (H2, CH4, C2H4, and C2H2) exceeds twice the limit 

values (as specified in Table 3), and one of the other gases also 

surpasses these limit values (Duval, M., & DePabla, A., 2001). 

Table 2. Doernenburg ratio method  

Fault Types R1 R2 R3 R4 

Thermal Decomposition > 1.0 < 0.75 < 0.3 > 0.4 

Corona < 0.1 - < 0.3 > 0.4 

Arcing 0.1 – 1.0 > 0.75 > 0.3 < 0.4 

*  

*  

 

Table 3. Acceptable limits for for the Doernenburg Ratio Method  

Key gases Limit (ppm) 

Hydrogen  100 

Methane  120 

Carbon monoxide  350 

Acetylene  1 

Ethylene  50 

Ethane  65 

 

After obtaining the fault labels, it was discovered that the 

provided dataset lacked several essential labels. To generate 

new data, the first step was to extract the distribution of 

features present in the real-time dataset. Next, the Inverse 

Cumulative Distribution Function (ICDF) was used to convert 

Gaussian samples into samples from the specified 

distributions. By doing this, the generated data retained the 

same statistical properties as the real dataset, and the missing 

labels were added to the generated data. The generated data 

was then combined with the real dataset to form a larger and 

more comprehensive dataset, which was used for training the 

SVM algorithm. The proposed approach achieved a 

probabilistic output for the fault diagnosis of oil-immersed 

transformers, overcoming the limitations of traditional DGA 

methods that often provide inaccurate diagnosis results and 

cannot summarize the fault development rule inductively. The 

effectiveness of the proposed approach was demonstrated in 

the case study results, which showed that the generated data 

significantly improved the performance of the SVM algorithm 

in predicting PT faults. 

3.1 Developing and implementation of SVM  

The development of any ML classification algorithm involves 

two crucial steps, namely building the classifier and applying it 

for classification purposes. In the first step, the ML classifier 

learns patterns, dependencies, and features from historical 

monitoring data, known as the training dataset. This dataset is 

used to derive classification rules, such as defining Class 0 as 

the gas amount being less than or equal to a predetermined 

time window, and other Classes for greater amounts of gases. 

In the second step, the model parameters are adjusted, and the 

classifier is utilized to predict the fault types of the validation 

set. The validation set helps to estimate the generalization error 

during or after training, and the hyperparameters are updated 

accordingly. Finally, the constructed classifier is evaluated on 

the test set to assess the accuracy of the classification rules on 

new datasets. If the performance metrics indicate that the ML 

classifier is reliable, it can be used to predict future fault types 

with high accuracy. 

The ultimate goal of developing SVM is to assign discrete 

labels to dataset based on their features or characteristics. For 

power transformers' fault prediction, SVM is trained to assign 

a random variable Y that represents the possible fault 

occurrence based on the observation of a set of input variables 

X. In this paper, the SVM is implemented to detect the fault 

labels of power transformers. The aim is to learn a mapping 



from inputs X to outputs Y, where Y is an integer value 

ranging from 1 to C, with C being the number of classes. In 

this paper, the number of classes (C) is equal to six, making 

the problem a multiclass classification task. The developed 

SVM is evaluated on a test set to determine its performance for 

future fault prediction. 

SVM is based on the statistical learning theory and aims to 

determine the location of decision boundaries that produce the 

optimal separation of classes (Vapnik, V. N., 1995). SVM is 

proposed initially for binary class classification. There are two 

main methods to generalize SVM for multi-class classification: 

One-versus-rest and One versus-one approach. 

3.1.1 One-versus-rest 

This approach is also called winner-take-all classification. 

Suppose the dataset is to be classified into C classes. 

Therefore, C binary SVM classifiers may be created where 

each classifier is trained to distinguish one class from the 

remaining C-1 classes. For example, the class one binary 

classifier is designed to discriminate between class one data 

vectors and the data vectors of the remaining classes. Other 

SVM classifiers are constructed in the same manner. Data 

vectors are classified during the testing or application phase by 

finding the margin from the linear separating hyperplane. The 

final output is the class that corresponds to the SVM with the 

largest margin. 

3.1.2 One-versus-one 

This method creates SVM classifiers for all possible pairs of 

classes (Knerret al., 1990; Hastie and Tibshirani, 1998). 

Therefore, for C classes, there will be binary classifiers. The 

output from each classifier in the form of a class label is 

obtained. The class label that occurs the most is assigned to 

that point in the data vector. In case of a tie, a tie-breaking 

strategy may be adopted. A common tie-breaking approach is 

to select one of the class labels that are tied randomly. The 

number of classifiers created by this method is generally much 

larger than the previous method - C(C-1)/2 classifiers in total-. 

In practice, one-versus-rest classification is usually preferred 

since the results are mostly similar, but the runtime is 

significantly less. 

3.2 Experimental results 

To implement the model, this study utilized a personal 

computer with Intel Core i7-10510U (1.80GHz) CPU, 16.0 GB 

memory, and Microsoft Windows 10 operating system. The 

model was implemented using Python 3.7 and the Keras 

(Chollet, F., 2015) library with the open-source software 

library TensorFlow (Abadi, M., et al., 2015) as a backend. 

The most common performance metrics to evaluate the 

multiclass classification are precision, recall, F-Score, true 

positive rate, false-positive rate, and confusion matrix from the 

expected and predicted classes’ matrix. These metrics are 

explained as follows. 

Precision: The percentage of predicted anomaly records that 

are actual anomalies.   

Recall: The percentage of the total number of correctly 

classified anomalous records to the total number of positive 

records. High recall value specifies the class is correctly 

recognized with a small number of false negatives. 

Accuracy: The percentage of correctly classified records over 

total records. If the false positives and false negatives have 

similar costs, accuracy will work best.  

F-Score: This is the harmonic mean (in percentile) of precision 

and recall and always has a value near the smaller value of 

precision or recall. Thus, it provides a more realistic measure 

of a test’s accuracy by using precision and recall. If the costs 

of false positives and false negatives are very different, F-

Score works the best. 

Confusion Matrix: As illustrated by Table 4, this matrix 

explains the performance of classification on a set of test data 

where the true values are known.  

Table 4: Confusion matrix for binary classification 

 
Predicted Label 

Class 1 Class 0 

Actual Label 
Class 1 True Positive False Negative 

Class 0 False Positive True Negative 

 

Table 5 shows the best results of the evaluation metrics for 

SVM classifier. It has achieved a considerable overall accuracy 

(>95%).  

Table 5: Results of the evaluation metrics  

Label Precision Recall F1-Score 

0 1.00 1.00 1.00 

1 0.93 0.99 0.96 

2 0.99 1.00 1.00 

3 0.86 0.94 0.90 

4 1.00 0.92 0.96 

5 0.93 0.82 0.87 

Accuracy 0.95 

macro avg 0.95 0.95 0.95 

weighted avg 0.95 0.95 0.95 

 

Fig.1 represents the results of evaluating the test set as a 

confusion matrix. In our case, C = 6 representing the various 

classes available in the dataset and it shows the definite 

positives, definite negatives, projected positives, and projected 

negatives. The running diagonal represents the values of the 

correctly predicted instances and is also known as true 

positive. The values in the off diagonal represents the 

incorrectly classified instances and manifest as falsely positive 

or falsely negative. The falsely positive are referred to as the 

Type I errors while the falsely negative instances are Type II 

errors. It is observed that the specificity values for all class 

labels is above 0.81%, which imply fewer false negatives. 

Interestingly, labels 0,1 and 2 are performing well though they 

are from minority classes.  



 
 

Fig. 1. Confusion matrix for SVM 

 

4 CONCLUSION 

In conclusion, this paper proposes a novel approach for power 

transformer fault prediction using SVM multi-classification, 

which effectively recognizes the six leading operating labels of 

transformers. The proposed approach was validated using 

General Electric data and transformer online monitoring data 

from various locations, and it provided promising results that 

recommend its use in the industry. However, as a future 

challenge, it is important to further investigate the impact of 

data pre-processing and data balancing methods on DGA data. 

In prospective studies, the authors plan to explore the 

implementation of sequence-to-sequence deep learning 

classifiers for time series datasets using IoT-enabled intelligent 

sensors for real-time observation of transformers. These efforts 

will further improve the accuracy and efficiency of fault 

diagnosis for power transformers. 
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