
Abstract – In recent years, Predictive Data Analytics (PDA) integrated with Supply Chain Information Systems (SCIS) has 

been the focus of considerable work to enable companies to make better decisions and remain competitive. Supervised 

Machine Learning (SML) approaches are becoming the main lever to smooth and facilitate this integration in this 

challenging environment. These approaches lead academics and industry to abandon procedural development and begin to 

think about undertaking them inductively by learning from the input data. However, SCISs have specific considerations 

that strongly affect the effectiveness of these learning models. Indeed, practitioners do not have some "recipe" for choosing 

a specific SML algorithm for a given problem in SCIS. They have to go through tedious phases and often depend on IT 

providers to do so. For this reason, the applicability of SML in SCIS is today an emerging challenge for scientists and 

practitioners, while the scientific literature is still in its early stages. This paper attempts to fill this gap by proposing a novel 

profiling approach for the applicability of SML in SCIS, including a comprehensive dual taxonomy with a Hierarchical 

Agglomerative Clustering algorithm (HAC). The profiling approach can help researchers and industrialists in the early 

selection of algorithms for their integration projects and thus avoid failure rates and expensive investments 
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INTRODUCTION 

In the early 2000s, highly digitized systems started incorporating 

Predictive Data Analytics (PDA) to enhance decision-making 

and competitiveness in Supply Chains (SC) [Schoenherr et 

Speier-Pero, 2015]. One of the techniques used is Supervised 

Machine Learning (SML), a subcategory of Machine Learning 

(ML) and a branch of Artificial Intelligence (AI). 

Supervised Machine Learning (SML) techniques have gained 

popularity with the continued growth of Supply Chain 

Information Systems (SCIS) [Mahraz et al., 2022], as they can 

learn from the environment and develop powerful models. 

These approaches effectively tackle complex decision problems 

where traditional methods fall short. For example, authors in 

[Harikrishnakumar et al., 2019] proposed SML algorithms 

including the Support Vector Machines (SVM), Logistic 

Regression (LRE), K-Nearest Neighbors (KNN), and Naïve 

Bayes Classifiers (NBC) algorithms. They used these models to 

classify various suppliers into four categories (excellent, good, 

satisfactory, and unsatisfactory) in the supplier assessment 

Multi-Criteria Decision-Making (MCDM) approach. Others 

like [Abbasi et al., 2020] proposed predicting solutions to deal 

with the issue of solving large optimization problems by using 

predictive algorithm models for decision makers. They propose 

predicting the optimal value of actionable decision variables.  

Both industry and academia recognize SML as an opportunity to 

address management challenges by supporting decisions 

processes based on historical data models, outperforming the 

outdated techniques [Ni et al., 2020]. Examples include the use 

of Support Vector Machines in Enterprise Resource Planning 

(ERP) platforms [Chou et al., 2012] and Decision Trees (DTR) 

in Customer Relationship Management (CRM) systems [Chen 

et al., 2021]. 

Despite the growing adoption of SML techniques, several 

challenges and concerns have arisen regarding their use and 

applicability [Cavalcante et al., 2019]. The effectiveness of the 

resulting models heavily depends on the availability and quality 

of input data. There is no foolproof method to determine if a 

learning algorithm is appropriate, especially in predictive tasks 

that largely depend on data and system configuration 

[Cavalcante et al., 2019]. These challenges have made the 

applicability of SML in SCIS a crucial research problem for 

both industry and academia. However, academic research on 

this topic is still in its infancy. Hence, the need for systematic 

research in this field has become an urgent requirement. 

This systemic investigation can be approached by comparing the 

applications of these algorithms using a criteria grid. However, 

the sheer number of algorithms, including meta-heuristics, 

heuristics, and their variants, would make a comprehensive 

comparison impractical in one study. A systematic and holistic 

approach is necessary to conduct such a research. To the best of 

our knowledge, such an approach has not been proposed in the 

existing scientific literature. 

The main contribution of this paper is to fill this gap by 

introducing a holistic analytical framework to assess the 

applicability of SML algorithms in SCIS and provide a tool to 

guide practitioners and researchers. 

This paper does not specifically focus on prescriptive analytics 

that aim to facilitate “actionable decision-making” [Lepenioti et 
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al., 2020] in accordance with the Gartner® Analytics 

Ascendancy Model (GAAM) [Eriksson et al., 2020], which 

focuses on "How we can make things happen". Although 

prescriptive analytics typically rely on predictive models, such 

as those utilizing predictive techniques as proposed in [Salah et 

Srinivas, 2022] and [Pessach et al., 2020], our present paper 

instead focuses on Supervised Machine Learning models in 

general. These models are geared towards predicting "what will 

happen" (as defined by the GAAM model [Eriksson et al., 

2020], which can be used for both prescriptive and predictive 

analytics purposes as mentioned in [Bertsimas et Van Parys, 

2022]. In other words, we do not primarily concentrate on 

foresighting analytics, but rather on insighting analytics, which 

serve as a key step in the decision-making process within 

organizations [den Hertog et Postek, 2016]. 

The article is structured as follows: Section 1 provides a 

literature review and background on SCIS and SML, identifies 

research gaps, and presents the problems in this area. Section 3 

outlines our proposed methodology for addressing these gaps. 

Section 4 presents the main results. Finally, Section 5 concludes 

the paper with a summary, the limitations of our proposed 

solution, and suggestions for future work. 

1 BACKGROUND AND RESEARCH GAP 

The Supply Chain Information Systems (SCIS) comprise a 

group of interconnected software modules that work together to 

process, store, and control business operations. They convert 

data into valuable information across one or multiple Supply 

Chains (SC). The output of SCIS serves in the flow of 

information related to various management functions such as 

production, supply, marketing, sales, warehousing, accounting 

and strives to continuously improve performance [Akbari et Do, 

2021]. The main drivers of this improvement can be reduced 

costs, enhanced customer services, and faster distribution, 

shipping, and delivery. These systems include Electronic Data 

Interchange (EDI), ERP platforms, Advanced Planning Systems 

(APS), Warehouse Management Systems (WMS), and many 

other supplementary systems. 

With the advent of Big Data platforms, IoT, and Industry 4.0-

related infrastructures that generate massive amounts of data, 

SCISs face new challenges that require more advanced analytics 

than conventional methods [Khan, 2013]. This allows for 

greater elasticity, adaptability, agility, and capabilities in 

prediction, real-time processing, optimization, and accuracy. 

Hence, SCISs have undergone several transformations over 

time, starting from theory-driven, practice-driven, and IT-

driven, and now, we are in the data-driven era, where data is 

allowed to express itself. 

Supervised Machine Learning (SML) is a subclass of Machine 

Learning techniques that operate on input-output pairs using 

"labeled" data, and the model can predict output classes based 

on that. Therefore, SML algorithms are also referred to as 

"induction classification algorithms." In other words, SML 

approaches can build models by mapping the relationship 

between the observed data features (input) and the labeled data 

(output) [Wuest et al., 2014]. Technically, the SML algorithm 

automatically generates a model by mapping the association 

between the Descriptive Data Features (DDF) (also known as 

"predictors") and the Targeted Output Variables (TOV). The 

TOV can be any generated values, either a discrete set of classes 

or a continuous range of values. After generating the model, 

new predictions can be made for newly observed data (Figure 

1). 

 

 

Figure 1. Supervised ML algorithm vs. general algorithm 

 

The main challenges in integrating SML into Supply Chain 

Information Systems (SCIS) are related to the applicability and 

selection of algorithms. Practitioners face the challenge of 

choosing the appropriate algorithm for a specific business 

problem, as no single algorithm fits all cases, as demonstrated 

by the "No Free Lunch Theorems (NFLT)" [Wolpert et 

Macready, 1997]. Furthermore, IT developers do not always 

guarantee business value in SML-based supply chain systems 

[Reis et al., 2020]. The "curse of dimensionality" [Xu et al., 

2020] can also impact the robustness of SML algorithms, as they 

can be sensitive to the size of the dataset. Additionally, the 

implementation and training phases of SML require significant 

time and investment, making pre-selection of algorithms crucial 

for successful application. Despite their growing use, the 

development of successful SML applications still requires a 

significant amount of “black art” and investment. 

2 RESEARCH METHODOLOGY 

Our review of the existing literature revealed two distinct parts 

in the literature review studies: (1) Technique-focused LR 

studies, where the authors only focused on a specific class of 

algorithms and did not consider all SML approaches, as seen in 

[Rostami et al., 2015]. (2) Domain-focused LR studies, where 

the authors analyzed one or more specific domains in 

management but lacked a comprehensive scope, as seen in 

[Akbari et Do, 2021]. Given these challenges and the gaps in the 

research, our paper aims to provide a clear understanding of the 

applicability profiles of SML in SCIS to guide current and 

future research. 

Due to the complexity and diversity of SML techniques and 

SCIS categories, we chose a two-stage methodology for this 

study, starting with a primary taxonomy, followed by a detailed 

examination and profiling in the second stage. 

2.1 Stage of Taxonomification 

Our approach is based on a dual taxonomy, consisting of: (1) a 

taxonomy for Supply Chain Information Systems (SCIS) based 

on business functions, and (2) a taxonomy for Supervised 

Machine Learning (SML) techniques based on current business 

applications. The next two sub-sections will provide further 

detail on each of these proposed taxonomies. 

2.1.1 Proposed SCIS Taxonomy 

The examination of the intersection of research on SCIS reveals 

the use of two commonly recognized classifications: (1) The 

levels-oriented classification of Ivanov (2010) (SCIS-C1), 



which is based on four levels: operational-level systems (OLS), 

management-level systems (MLS), knowledge-level systems 

(KLS), and strategic-level systems (SLS). (2) The functions-

oriented classification of Bucher and Winter (2010) (SCIS-C2), 

which is based on four functions: sales and marketing function 

(SMF), finance and accounting function (FAF), manufacturing, 

logistics, and production function (MPF), and human resources 

and workforce function (HRW). 

Despite the widespread use of these classifications in research, 

some SCISs involve cross-functional operations that are 

challenging to categorize separately, such as business process 

management (BPM). As a result, adopting these classifications 

may lead to siloed functions, which would be restrictive and 

exclude some functions. To address this issue, we propose a 

third combined classification inspired by the typologies in 

Huemann (2010) and Hwang et al. (2015). The four classes of 

this proposed taxonomy (named "SCIS-C3") are as follows: 

1. Transaction Information Systems (TIS),  

2. Automation, Knowledge, & Engineering systems (AKE),  

3. Decision Support Systems (DSS),  

4. Macro Planning Systems (MPS). 

2.1.2 Proposed SML Taxonomy 

Research indicates three main categories of SML in SCIS: (1) 

Theory-oriented classification by Taiwo [Taiwo, 2010] (SML-

C1), which consists of twelve classes based on the ground 

theory of classification, including Linear Classifiers (LCL), 

Logistic Regression, Naive Perceptron Classifiers (NPC), 

Support Vector Machines (SVM), Bayes Classifiers (BCL), 

Polynomial Classifiers (PCL), Boosting (BOO), Decision Trees 

(DTR), Random Forest (RFO), Artificial Neural Networks 

(ANN), K-Means Clustering (KMC), K-Nearest Neighbor 

Classifiers, and Bayesian Networks (BNE). (2) Mechanism-

oriented classification by Kotsiantis et al. [Kotsiantis et al., 

2007] (SML-C2), which categorizes SML into five classes 

based on operational mechanism: Logic-Based Techniques 

(LBT), Perceptron-Based Techniques (PBT), Statistics-Based 

Techniques (SBT), and Support Vector Machines (SVM). (3) 

Problem-oriented classification, the most commonly used in 

research [Rodrigues et al., 2017] (SML-C3), which divides 

SML into two types based on problem nature: Classification 

Algorithms (CLA) and Regression Algorithms (REA). The 

Classification Algorithms class predicts the group to which the 

data belongs and its output consists of only discrete unordered 

values. 

SCISs are highly dynamic, uncertain, and contain huge 

unstructured data with duplications, redundancies, and noise, as 

well as silos of truncated business datasets [Akbari et Do, 2021]. 

Unlike ISs in other fields, such as healthcare, where medical 

data is usually structured. For these reasons, we suggest that the 

focus should be on the predictor features (DDF) rather than just 

the theory-oriented, target-oriented, or problem-oriented 

classification. Hence, the classification we propose is DDF-

oriented and is adapted from classifications by [Kelleher et al., 

2020] and [Xu et al., 2007]. It consists of four classes as follows: 

1. Information-Based Learning Approaches (INF): This 

category's fundamental basis is Shannon's theory presented 

in 1948 by Claude Shannon [Rodrigues et al., 2018]. The 

key idea is to extract a specific measurement from the DDF 

through the information contents.  

2. Error-Based Learning Approaches (ERR): Error-based 

approaches are mathematical models that are founded on 

the idea of getting performance through error minimization 

in the training phase [Kelleher et al., 2020].  

3. Similarity-Based Learning Approaches (SIM): The key 

idea in these approaches is that the best way of predicting 

the future is to compare and find similarities in the past 

[Chen et al., 2009]. That leads to determining similarities 

in the defining features of DDF.  

4. Probability-Based Learning Approaches (PRO): They are 

based on the Bayes theorem [Kelleher et al., 2020]. The 

idea is that the future is a random event based on relative 

frequencies with the calculation of conditional probabilities 

based on the present and the past. 

 

Table 1 below presents the key publications reviewed during the 

process, including the identification of the relevant SCOR 

processes. 

2.1 Stage of Review Process   

2.1.1 Dataset Extraction 

We used the Harzing Publish or Perish® [Harzing.com, 2022] 

tool over the selected period of publications from 2010 to 2018. 

Due to the significant impact of COVID-19 on publications after 

2018, we decided to end the extraction at that date. The dataset 

was extracted from various academic search engines including 

Crossref, Microsoft Academic, Google Scholar, and Scopus and 

obtained from databases such as Springer, Wiley, Elsevier, 

Taylor & Francis, IEEE, Emerald, and Inderscience. The initial 

dataset yielded 1,000 papers in a CSV list with columns such as 

title, authors, citations, publication year, publisher, and source 

URL. We then filtered the sorted dataset by removing unwanted 

columns, such as ISSN, GSRank, sources, and links, and kept 

only the relevant columns for our analysis, including authors, 

citations, publication year, title, journal name, and URL. We 

excluded all papers that were not in English, editorial pieces, 

reports, theses, white papers, conference or seminar papers, 

patents, and papers on irrelevant topics. This process reduced 

the initial raw list of 1,000 to 957 papers. 

2.1.2 Dataset Preparation 

The list of papers was divided chronologically into three groups 

to facilitate analysis: group 1 (2010-2013), group 2 (2014-

2016), and group 3 (2017-2018). During the first scan, we 

briefly reviewed the abstracts, introductions, and conclusions of 

each of the 957 selected papers. In the second scan, the papers 

were systematically divided into three categories based on the 

type of publication: original research, surveys, and review 

papers. The results showed that the usage of LR studies was 

negligible compared to original research and surveys. Finally, 

the cleansing step reduced the list to 830 mixed original research 

papers that were reclassified for analysis, while LR and survey 

papers were excluded as they were not relevant in determining 

applicability profiles. 

 

 



Table 1. Illustrative examples of some relevant publications with proposed classifications vs. existing classifications 

Research publication 
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SCIS Business function(s) 

SCIS classifications 

Used SML algorithms 

SML classifications 
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C
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-C

1
 

S
C

IS
-C
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S
C

IS
-C
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SML-

C1 
SML-C2 SML-C3 SML-C4 

[Ullah et al., 2019] D Churn prediction  MLS SMF TIS Random Forest RFO LBT REA INF 

[Anbazhagan et Kumarappan, 2012] D Markets forecasting KLS SMF AKE Recurrent Neural Networks NNE PBT CLA ERR 

[Hua, 2011] D Customer management  MLS SMF TIS Naive Bayesian classifier BCL SBT CLA PRO 

[Kwon, 2017] D Transportation OLS MPF TIS Artificial Neural Network NNE PBT CLA ERR 

[De Paula et al., 2019] P Profit scoring OLS FAF TIS Logistic Regression LRE SBT REA  

[Ryu et al., 2020] S Purchase forecasting MLS MPF DDS Long-short Time Memory NNE PBT CLA ERR 

[Zhang et al., 2017] P Project Management  SLS SMF DDS Lasso Regression  LRE PBT CLA ERR 

[Ganji et Mannem, 2012] D Fraud Detection OLS FAF TIS K-Nearest Neighbor KNN SBT CLA SIM 

[Gao et Fan, 2021] M Customer experience OLS MPF TIS Polynomial regression PCL SBT REA ERR 

[Rahimi, 2017] D Customer management MLS MPF DDS Linear Regression LRE SBT REA ERR 

[Ju et al.,2017] M Product processes MLS MPF DDS Least-angle regression OLS  LRE SBT REA ERR 

[Chou et al., 2012] P Forecasting in ERP SMF AKE SMF Support Vector Machine SVM SVM CLA ERR 

[Chen et al., 2021] P Customer management MLS MPF DDS Decision Trees DTR LBT REA INF 

[Fei et al., 2017] D Customer churn MLS SMF DSS Naive Bayes Classifier BCL SBT CLA PRO 

[Lockamy III, 2011] S Suppliers management MLS MPF DSS Bayesian Networks BNE SBT REA PRO 

[Al-Dmour et Al-Dmour, 2018] P Performance prediction  MLS FAF DSS Multiple Linear Regression LCL SBT REA ERR 

[Von Kirby et al., 2017] D Sales classification KLS SMF AKE AdaBoost Algorithm  BOO LBT CLA INF 

[Kirori, 2011] P Banking and funding KLS FAF AKE LogitBoost  Algorithm  BOO LBT CLA INF 

* SCOR processes: P: Plan, S: Source, M: Make, D: Deliver, R: return   

 
In order to construct the Dataset, we first conducted an 

extensive scan of the resulted 830 papers, analyzing their 

characteristics and matching them with the matrix formed by 

the SCIS proposed taxonomy and the SML proposed 

taxonomy (as described in sections 3.1.1 and 3.1.2). Next, we 

computed the number of papers that corresponded to each cell 

in the matrix in order to normalize the data. As a result, we 

obtained a matrix that dynamically maps the relationship 

between the SML approaches and the SCIS classes, as 

presented in Table 2. 

 

Table 2. Simplified illustration of the Dataset (Matrix SCIS x 

SML) 

 
 

2.2 Stage of Analytics  

The profiling techniques aim to identify distinct 

"characterizable" shapes within sets of objects, serving as a 

fundamental method to uncover hidden patterns, understand 

information distributions, and identify dissimilarities in 

datasets [Ayanso et Yoogalingam, 2009]. Clustering 

techniques have been widely used in profiling, including in 

areas of management such as customer behavior segmentation 

[Tsourgiannis et Valsamidis, 2021] and supplier profiling 

[Visani et Boccali, 2020], among others. 

The Hierarchical Agglomerative Clustering (HAC) approach 

is a widely used bottom-up clustering algorithm that is 

effective in classification, pattern retrieval, and profiling, 

particularly with multi-dimensional variables. We applied the 

HAC algorithm to the preliminary phase dataset using the R 

scripting language, with the Ward distance metric. The Ward-

D2 (AGNES with k=4) was calculated between the profiles 

(clusters) based on the squared Euclidean distance. 

 

The Ward-D2 distance metric 𝐷(𝐶1, 𝐶2)𝑊𝑎𝑟𝑑  is expressed as : 

 

𝐷(𝐶1, 𝐶2)𝑊𝑎𝑟𝑑 =  
(N1 ∗ N2)

(N1 + N2)
 ×  D(𝐶1, 𝐶2)𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛               (1) 

 

Where: 
𝑁1  and 𝑁2  are the number of observations in clusters C1 and 

C2, respectively, 
𝑥𝑖  ∈ 𝑋𝑖 and 𝑥𝑗  ∈ 𝑋𝑗 are the data in the clusters of C1 and C2 

respectively, where each row represents a data point.  

D(𝐶1, 𝐶2)𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛  is the squared Euclidean distance between 

the centroids of these clusters expressed as:  
 

D(𝐶1, 𝐶2)𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛 =  
1

(𝑁1×𝑁2)
 ×  ∑ ∑ ‖𝑥𝑖 −  𝑥𝑗‖

2𝑁2
𝑗

𝑁1
𝑖             (2) 

 

The results of the HAC applied to our dataset are 

shown in Figure 2, Figure 3 and Table 3 below.   
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(a)  

 

 

(d) 

Figure 2. HAC representations: (a) rectangular 

dendrogram, (b) Silhouette diagram (AGNES method 

WARD-D2, K = 4, developed with R®) 

2.2.1 Inclusion of SML classes in profiles (clusters) 

Figure 2 depicts the rectangular and silhouette diagrams, which 

illustrate four clusters (1, 2, 3, and 4) comprising 11, 7, 9, and 

4 classes of SML approaches, respectively. It can be observed 

that Cluster 1 is the most prolific, followed by Cluster 3, 

Cluster 2, and finally Cluster 4. Table 3 provides a complete 

description of the four clusters (profiles), which is 

complemented by Figure 3. These figures reveal that all the 

profiles (clusters) have adopted SML approaches to varying 

degrees and intensities. 

Moreover, Table 3 indicates that the presence or absence of 

certain SML classes distinguishes and identifies the profiles 

(clusters), namely Information-based (INF), Error-based 

(ERR), Similarity-based (SIM), and Probability-based (PRO). 

For example, Profile 1 includes all classes, whereas Profile 2 

comprises 3 (INF, ERR, SIM), Profile 3 includes 2 (INF, 

ERR), and Profile 4 contains only 1 (INF). 

 

 

2.2.1 Inclusion of SCIS classes in profiles (clusters) 

Figure 3 and Table 3 reveal the following: Cluster 1 includes 

61 ML applications of 11 ML algorithms with a variation 

exponential trend of (𝑦 =  0.4795𝑒−0.387𝑥, R² ~ 0.26). The 

first position is to hold by the knowledge-based applications 

(AKE) with the majority of more than half (54.10%), followed 

by moderate intensities in the transactional systems (TIS) 

(22.95%), then the decision-based platforms (DSS) with 

18.03%. Only a few works (4.92%) are placed in the planning 

systems' last position (MPS). The profile of Cluster 2 covers 

256 applications using 8 ML approaches with a variation of 

(𝑦 = 0.3299𝑒−0.207𝑥 , R² = 0.08) in the following ranking: the 

decision systems (DSS) take the first position modestly with 

34.38%, followed narrowly by the knowledge systems (AKE) 

with 30.86%, then the transaction-based applications (TIS) 

with 30.08%, and lastly the macro-planning platforms (MPS) 

with few works (4.69%). The profile of Cluster 3 comprises 

225 publications embedding 9 ML algorithms with an 

exponential trend of (𝑦 =  0.5923𝑒−0.391𝑥, R² = 0.8013). The 

knowledge-based systems (AKE) are ranked in the first 

position with 39.56% neighboring the decision-based systems 

(DSS) with 32.89%, and the transaction-based applications 

(TIS) with 14.67%, and lastly, we find the macro-planning 

systems (MPS) with more than 12.-%. The profile 

corresponding to the Cluster 4 contains only 4 ML algorithms 

that have been used in more than 300 applications (~379) with 

an exponential trend of (𝑦 = 0.5149𝑒−0.321𝑥 , R² = 0.7895). These 

applications represent mainly the knowledge systems (AKE) 

but not in an overwhelming majority (38.-%), followed by the 

decision systems (DSS) with 31.40%. The remaining 

applications are then led by the transaction-based platforms 

(TIS) with 16.62% and the planning systems (MPS) with 

14.51%. 

All the profiles incorporate Information-based algorithms 

(INF), but at different frequencies. We attribute this 

observation to their efficiency and extensive practical 

experience in SC applications. This category of approaches has 

the advantage of being applied to multiple predictive models 

[Kelleher et al., 2020], which is crucial due to the lack of 

technical and AI-based business skills among practitioners. 

Notable examples are Decision Trees algorithms [Chen et al., 

2021] and Random Forest algorithms [Ryu et al., 2020]. 

However, their main drawback is the selection of content 

metrics, which can be challenging, especially with noisy data. 

Error-based algorithms (ERR) are included in three profiles (1, 

2, and 3). Despite their proven and long-standing use in other 

fields, they are not universally applicable in SCIS as they 

require data-rich datasets for the training phase and continuous 

error correction. However, they are still preferred when these 

conditions are met, such as in Artificial Neural networks 

[Kwon, 2017]. As a result, several new variants of algorithms 

and hybrid heuristics are gradually emerging to overcome this 

limitation. An example is the combination of Fuzzy Logic and 

Genetic Algorithm to avoid local minima in ANN training 

[Azeem et Mohammad, 2015]. 

 



Table 3. Numerical characteristics of the four clusters from HAC applied to the SML-SCIS mapping  
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Figure 3. Graphical characteristics of the four clusters resulted from HAC applied to the SML-SCIS 

 

Thirdly, the Similarity-based algorithms (SIM) are present in 

two profiles (1, 2). Firstly, they are suitable for situations 

requiring rapid scalability in business systems, such as the 

Nearest Neighbors (KNN) [Ganji et Mannem, 2012] in cases of 

significant data context requiring parallel processing. The main 

challenge with similarity-based models is their high memory 

usage, particularly when dealing with large-scale data where 

binary distances increase exponentially. 

Lastly, Probability-based algorithms (PRO) are less frequently 

used in SCIS and constitute a small portion of the overall 

algorithms. Despite their proven efficiency in various 

disciplines due to their ability to train rapidly [Lockamy III, 

2011], they are only present in profile 1. The advantage of 

probability-based approaches stems from their grounding in 

Bayesian theories, which are influential in various targeted 

feature classes. Therefore, they are better suited for SCIS, 

which demands robust real-time results. 

3 INTERPRETATION AND DISCUSSION  

Based on the above observations, the following are the 

distinctive characteristics of the profiles: 

 

1. Data set density is crucial for SML algorithms in general. 

However, when IS interacts with SCM, this specific factor 

intensifies challenges such as noisy data, confidentiality, and 

security issues. In the profiles, the intensity of data 

availability was found to differentiate between data-rich and 

data-poor environments, which constitutes a defining 

characteristic. Examples of data-rich environments are 

significant data contexts connected to SCM, such as 

industrial-technological processes [Wamba et al., 2015]. On 

the other hand, cases of data-poor environments correspond 

more to emerging sectors of SCM where knowledge and 

records are still missing, such as fin-tech from emerging 

online banks [Bazarbash, 2019]. 

 



2. Scalability also defines distinctive features of profiles for 

SML algorithms. For instance, it is necessary when the 

dataset size may grow, and the SML model must dynamically 

adjust accordingly [Gupta et al., 2016]. We observed that the 

need for scalability (or not) identifies specific profiles. For 

example, some SML algorithms may struggle when 

scalability is applied as they fail when their inputs scale to 

larger datasets, such as RFID-based decision systems in 

distributed manufacturing [Guo et al., 2015]. However, cases 

of non-scalable systems characterize sectors where dataset 

dimensions are still stable. 

3. Real-time SML in continuous transactional data and 

streaming analytics is a strict requirement in some sectors, 

such as RFID-enabled real-time logistics trajectory [Zhong et 

al., 2015]. However, not all SML models can remain robust 

and operate with responsiveness in real-time mode. Most of 

these algorithms experience latency when challenged with 

continuous flow processing. 

4 CONCLUSION, LIMITATIONS, AND OPEN VIEWS 

The focus of this paper is on the applicability of Supervised 

Machine Learning (SML) in Supply Chain Information 

Systems (SCIS). We present a comprehensive study of 

academic SML-based SCIS applications through a double-

taxonomy and clustering-based profiling approach. The results 

of our analysis led to the identification of four distinct profiles. 

Our main findings indicate that the applicability of SML 

approaches is influenced by the data availability and maturity 

in SCIS, and these factors determine the four profiles. Secondly, 

the disparity in applying SML algorithms is not driven by 

organizational or managerial needs, but rather by the ability of 

the business system to provide the necessary data features, 

including data richness, scalability, and real-time processing. 

 

The use of a Hierarchical Agglomerative Clustering algorithm 

for profiling constitutes an originality in our approach, as it is a 

suitable technique for analyzing complex datasets. However, 

this approach also has limitations, as clustering can be 

challenging when determining the number of clusters, and it can 

be sensitive to outliers. Additionally, the use of Harzing® for 

dataset extraction is limited to 1000 rows, despite its user-

friendly interface. 

 

Our future research direction is to develop an assessment model 

of applicability based on the four profiles. This model will 

enable the evaluation and comparison of SML applicability for 

specific business problems prior to development and training. 
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