
Résumé – Cet article traite un problème d’ordonnancement des opérations et affectation des machines dans une mine à ciel

ouvert pour atteindre les objectifs de production. Tout cela est contraint par : séquencement des opérations, accessibilité

aux couches, compatibilité, disponibité et mouvements des machines. Le problème est modélisé comme un problème du Job

Shop Flexible avec des time-lags génériques. Cet article introduit une modélisation du problème basée sur le graphe

disjonctif et une méthode approchée Greedy Randomized Adaptive Search Procedure (GRASP) pour la résolution. Une

comparaison entre cette dernière et un programme linéaire en nombre entier montre que cette méthode fournit des solutions

de meilleures qualités.

Abstract – This paper presents a solution for scheduling open-pit mining operations and machinery affectation to meet

production goals. The problem is complex due to various constraints such as operation sequencing, machinery compatibility,

machinery availability, and accessibility to layers. The solution uses a disjunctive graph and a GRASP algorithm to solve

the problem modeled as a flexible job shop problem with generic time-lags between operations. The algorithm performance

has been benchmarked against a Mixed Integer Linear Program and provides high-quality solutions via numerical

experiments.

Mots clés – Ordonnancement, Job Shop Flexible, Time-lags, Métaheuristique, GRASP.

Keywords – Scheduling, Flexible Job Shop, Time-lags, Metaheuristic, GRASP.

1 INTRODUCTION

This article analyses the problems posed by the operational

decisions related to ore extraction in an open-pit mine.

Motivated by a scheduling problem in OCP Group, a phosphate

ore extraction and fertilizer production world leader, this

research deals with a short-term scheduling problem. It proposes

an original modeling approach based on a flexible job shop and

minimum time-lags. The Greedy Randomized Adaptive Search

Procedure (GRASP) heuristic approach is used to solve the

problem.

We start by providing the characterizing features of the studied

problem (§2) before presenting the suitable formalization for a

theoretical scheduling problem and the related literature review

(§3). Next, the framework based on a disjunctive graph model

and the GRASP algorithm is proposed (§4). Section §5 deals

with the computational evaluation of the framework, including

industrial-based benchmarks, before concluding and promising

directions for future research (§6).

2 PROBLEM DEFINITION

The integrated supply chain of OCP Group links the different

processes of ore extraction, ore blending, phosphoric acid,

fertilizer production, and export. It comprises three independent

axes: the north, center, and south. This study focuses on the Ben

Guerir mine in the center axis, where the phosphate deposit is

composed of the accumulation of layers of different geological

and chemical compositions natures. The sedimentary nature of

the mine tolerates the extraction of a layer only if the upper level

is already removed. As shown in Figure 1, from a transverse

view, the deposit contains several panels, each panel is

composed of a group of trenches, and each trench is made up of

parcels (or blocks): rectangles of 4000m2 (40m * 100m) that

contain alternate phosphate and waste blocks. Particular layers

might not exist in some parcels due to geological factors.

SOUFIANE AALLAOUI1, AHLAM AZZAMOURI1, LIBO REN2,3 NIKOLAY TCHERNEV1,2

1 EMINES, School of Industrial Management, Mohammed VI Polytechnic University

43150 Benguerir, Morocco
{soufiane.aallaoui, ahlam.azzamouri}@emines.um6p.ma

2 LIMOS (UMR CNRS 6158), Clermont Auvergne University

1 rue de la Chebarde, 63177 Aubière Cedex, France

nikolay.tchernev@uca.fr

3 CLeRMa EA3849, Clermont Auvergne University,

11 boulevard Charles de Gaulle, 63000 Clermont-Ferrand, France

libo.ren@uca.fr

CIGI QUALITA MOSIM 2023

A GRASP algorithm for scheduling of open-pit

phosphate mine extraction

Box-Cut Extraction to the rightExtraction to the left

PanelTrench

Parcel

Block

Figure 1. Open-pit block model

The extraction process results from the iteration of a sequence

of elementary operations 𝑂𝑗,𝑜 performed on blocks by

specialized or multipurpose machine 𝑀𝑗,𝑜,𝑚 from a set of

machines 𝑀𝑗,𝑜 = {𝑀𝑗,𝑜,1, 𝑀𝑗,𝑜,2, . . . , 𝑀𝑗,𝑜,𝑀}. These resources are

limited and urge the planner to find the best spatio-temporal

machinery affectation. The decisions to be taken by the planner

relate to [Azzamouri et al., 2018]: (i) The choice of parcels to

be extracted knowing that operations are in progress in several

parcels; (ii) The allocation of the machines available to perform

these operations. The extraction process starts with recovering

the ore and moving the waste from the trench in the middle of a

given panel, which creates a void called a “Box-cut” (Figure 1).

Then, the extraction continues simultaneously on the adjacent

trenches by pushing the waste blocks into the void and

recovering the ore from transporting it to the plant. For example,

extracting a phosphate block covered by a single block of waste

(e.g., a parcel that contains two blocks) means that the block will

be extracted based on seven elementary operations. These

operations are grouped into two stages, using the available

machines as follows: (i) The first stage is dedicated to waste

block recovery that consists of: {Site preparation for

drilling: 𝑂𝑗,1}, {drilling: 𝑂𝑗,2}, {blasting: 𝑂𝑗,3}, {site

preparation for stripping: 𝑂𝑗,4}, and {stripping : 𝑂𝑗,5}; (ii) The

second stage dedicated to phosphate block recovery involving

{stacking: 𝑂𝑗,6}, and {loading: 𝑂𝑗,7}. In this paper, it is assumed

that all the panels have a “Box-Cut,” and the block extraction

order has been made. The extraction process is constraint by

several factors:

 Precedence: That comes from geological nature of the

mine dictates the necessity of the upper blocks’

removal to access the lower ones, the staircase

extraction method that secures the process and the

relations between elementary operations;

 Resource availability: As a consequence of the multi-

purpose nature of the machinery, a machine may be

busy executing an operation;

 Machines motions: Each machine should return to the

waiting area after processing an operation to free up

space for another device. Depending on operation

locations, it can also travel from one parcel to another.

Indeed, the problem described above corresponds to the Hybrid

Flow Shop Scheduling Problem (HFSP) [Pinedo, 2016].

However, in classical HFSP, each machine belonging to a given

stage is used only at this stage. However, in the industrial

problem considered, many machines are used at different stages

during the parcel treatment. Therefore, the problem is modeled

as a Flexible Job Shop Scheduling Problem (FJSP) in which

time constraints restrict the minimum time distance between

two successive operations belonging to the same job or two

different jobs.

3 LITERATURE REVIEW: INSIGHTS & CONTRIBUTIONS

The production scheduling and short-term planning issues for

open-pit mines have not received as much attention in the

academic literature as the medium- and long-term perspectives

have [Blom et al., 2019]. Yet, over the past few decades, a

considerable amount of study has been done on scheduling

[Pinedo, 2016]. An open-pit mine production schedule related

to block sequencing is heavily studied in the literature, but the

issue of determining the resources that enable such a schedule

didn’t get as much attention. In this context, recent research in

mine scheduling has focused on developing methods that can

handle the complexity and uncertainty of real-world mining

operations. Thus, [Kozan et Liu, 2016] proposed a mixed

integer program to tackle a complex operational problem of

multi-resource multi-stage mine production timetabling. The

proposed approach maximizes the utilization of mining

equipment and mining productivity. The authors demonstrate its

effectiveness through a numerical case study and a practical

implementation based on real-life mining data. However,

[Lamghari et al, 2016] presented a progressive hedging

approach for mine scheduling. The authors proposed a new

method that considers the mining operations' uncertainty and

reserve quality. They found that this approach can improve the

efficiency of the mining operations and reduce the

environmental impact. And for fleet management, [Mohtasham

et al, 2021] present a mixed integer linear program to allocate

trucks and shovels in an open-pit mine. They formulated this

model to maximize fleet performance by maximizing

production and minimizing the fuel consumption of the trucks.

A copper mine case study has shown this model's effectiveness.

These are examples of methods among many in the literature

that addresses this problem. Furthermore, [Newman et al., 2010]

present a review of operations research's application to mine

planning. In many equipment routing and selection models,

optimization is used, i.e., integer programming, to determine

mine fleet size and allocation. In addition, many publications

are about loading and haulage operations: shovel and truck

allocation [Moradi Afrapoli et Askari-Nasab, 2019]. Simulation

is also used to address problems like this; for example,

[Azzamouri et al., 2018] used discrete event simulation to

generate short and medium-term planning and machine

allocation for an open-pit mine.

The problem addressed in this study is classified as a difficult

FJSP because of the generic time-lags constraints that must be

considered between operations from the same and different jobs

[Lacomme et al., 2011]. This complexity comes from the fact

that the FJSP is an extension of the hard problem JSP, for which

the literature suggests both exact and approximation methods

[Blażewicz et al., 1996]. [Roy et Sussmann, 1964] established

the disjunctive graph model, which is frequently the foundation

of successful solutions approaches, which effectively models

the relationship between operations. Additional constraints can

be considered to represent the reality of the scheduling problem,

like the paper of [Lacomme et al., 2011] which addresses this

problem with generic time-lags that models general timing

relations between jobs. Also, [Caumond et al., 2008] propose a

solution to the same problem using a disjunctive graph and a

memetic algorithm. The FJSP arises when one operation may be

executed on many machines. Thus, a review of the existing

solution methods is presented by [Chaudhry et Khan, 2016] and

[Xie et al., 2019], and classify them into exact algorithms,

heuristics, and metaheuristics. Improved versions of the

GRASP metaheuristic are used to solve the problem, like

[Kemmoé-Tchomté et al., 2017] who propose GRASP with a

multi-level evolutionary local search (mELS) that provides

valuable results in terms of computation times and quality.

4 FLEXIBLE JOB SHOP PROBLEM WITH GENERIC TIME

LAGS (FJSPGTL)

4.1 FJSPGTL in the literature

The FJSP problem, first introduced by [Brucker et Schlie,

1990], has been widely studied in the literature and has many

industrial applications. The FJSP with Generic Time-Lags

(FJSPGTL) can be found in many applications since they result

from technological or organizational constraints. Indeed, time-

lags can be used as restrictions enforcing minimal or maximal

delays between two operations to model general timing relations

between jobs, like start-start relations between jobs [Lacomme

et al., 2011]. A FJSP scheduling problem is an extended form of

a classical job shop scheduling problem (JSP), which is NP-hard

[Garey et al., 1976]. The particularity of FJSP is that each

operation related to a given job is processed by a machine

selected in a set of compatible and available ones. The

complexity of the FJSP suggests the adoption of heuristic

methods producing reasonably good schedules in an acceptable

execution time instead of seeking an exact solution.

4.2 FJSPGTL settings

Without loss of generality, each parcel can be considered as a

job j. Therefore, the scheduling of open-pit phosphate mine

extraction using the FJSPGTL can be formulated as follows: a

set of J jobs that must be processed on a set of M machines. Each

one of these jobs j involves a set of operations 𝑂𝑗 =

{𝑂𝑗,1, 𝑂𝑗,2, . . . , 𝑂𝑗,𝑘𝑗
} where 𝑘𝑗 refers to the number of operations

of the job j. An operation 𝑂𝑗,𝑘𝑗
 must be processed in a pre-

determined order, and no pre-emption is allowed. Each

operation is processed by one and only one machine from the

set 𝑀𝑗,𝑜 = {𝑀𝑗,𝑜,1, 𝑀𝑗,𝑜,2, . . . , 𝑀𝑗,𝑜,𝑀} of the compatible

machines. The processing time 𝑝𝑗,𝑜 that depends on the machine

𝑀𝑗,𝑜,𝑚 allocated to 𝑂𝑗,𝑜 and the geological nature of the block in

question.

A time-lag can be defined between the finish time of a given

operation 𝑂𝑗,𝑜 (denoted by 𝑓𝑡𝑂𝑗,𝑜
) and the start time of another

operation 𝑂𝑗′,𝑜′ (denoted by 𝑠𝑡𝑂
𝑗′,𝑜′) using the following

equation:

𝑇𝐿𝑚𝑖𝑛
𝑂𝑗,𝑜,𝑂𝑗′,𝑜′

≤ 𝑠𝑡𝑂𝑗′,𝑜′ − 𝑓𝑡𝑂𝑗,𝑜
≤ 𝑇𝐿𝑚𝑎𝑥

𝑂𝑗,𝑜,𝑂𝑗′,𝑜′
 (1)

With 𝑇𝐿𝑚𝑎𝑥
𝑂𝑗,𝑜,𝑂

𝑗′,𝑜′
≥ 𝑇𝐿𝑚𝑖𝑛

𝑂𝑗,𝑜,𝑂
𝑗′,𝑜′

In this formula 𝑇𝐿𝑚𝑖𝑛
𝑂𝑗,𝑜,𝑂

𝑗′,𝑜′
 represents the minimal time-lag

and 𝑇𝐿𝑚𝑎𝑥
𝑂𝑗,𝑜,𝑂

𝑗′,𝑜′
is the maximal time-lag. The first part of this

formula 𝑇𝐿𝑚𝑖𝑛
𝑂𝑗,𝑜,𝑂

𝑗′,𝑜′
≤ 𝑠𝑡𝑂

𝑗′,𝑜′
− 𝑓𝑡𝑂𝑗,𝑜

 means that 𝑂𝑗′ ,𝑜′

cannot start before at least 𝑇𝐿𝑚𝑖𝑛
𝑂𝑗,𝑜,𝑂

𝑗′,𝑜′
 units after the end of

𝑂𝑗,𝑜 . The second part of the formula 𝑠𝑡𝑂
𝑗′,𝑜′ − 𝑓𝑡𝑂𝑗,𝑜

≤

𝑇𝐿𝑚𝑎𝑥
𝑂𝑗,𝑜,𝑂

𝑗′,𝑜′
 means that 𝑂𝑗′,𝑜′ cannot be started later than

𝑇𝐿𝑚𝑎𝑥
𝑂𝑗,𝑜,𝑂

𝑗′,𝑜′
 units after the end of 𝑂𝑗,𝑜 . When there is a

classical precedence constraint between two operations, the

value of minimum time-lag is set to 0, and the value of

maximum time-lag is set to ∞. When there is no constraint

between two operations, both the minimum and the maximum

time-lags are set to ∞.

According to the 𝛼|𝛽|𝛾 notation introduced by [Graham et al.,

1976] the problem can be represented by 𝐹𝐽𝑐|𝑙𝑂𝑗,𝑜,𝑂
𝑗′,𝑜′ |𝐶𝑚𝑎𝑥.

Time-lags between the start and completion times of different

activities have to be observed in numerous scheduling problems,

including the Resource Constrained Project Scheduling

Problem (RCPSP), where resource consumption is addressed

[Brucker et al., 1999]. They result from technological or

organizational constraints in practice. Besides minimum time-

lags, maximum time-lags might be given, which occurs in the

chemical and food industries.

5 A GRASP ALGORITHM FOR MINING SCHEDULING

The framework is based on a GRASP algorithm (for job

sequence generation on machines) coupled with a powerful

local search procedure. The problem is modeled as a non-

oriented disjunctive graph. Since a job sequence on machines is

generated, obtaining an oriented disjunctive graph is possible.

A Bellman like longest path algorithm permits to compute the

earliest completion time of the last operation qualified as the

makespan 𝐶𝑚𝑎𝑥 (Figure 2).

5.1 Graph modeling

This section aims to propose a graph modeling of open-pit

phosphate mine extraction using the graph model proposed by

[Dauzère-Pérès et Paulli, 1997] for the FJSP, which is based on

the [Roy et Sussmann, 1964] disjunctive graph for the job

scheduling problems. The time-lags constraints are also

included.

interface

Instance to solve
and

framework
parameters

Best
solution

Job sequence on
machines

One solution

Non oriented
disjunctive graphe

Oriented
disjunctive graphe

GRASP algorithm

Longest path
algorithm

Figure 2. Description of the framework for FJSPGTL

5.1.1 Assumptions

As stated in the introduction, the extraction process is based on

seven principal elementary operations. The first five operations

allow the removal of the waste block, and the last two ones are

dedicated to ore recovery. In addition, we consider that:

 The job j corresponds to the accumulation of parcels

containing the set of layers (waste and phosphate

layers);

 The existence of a waiting machine area: a location

where machines are located during their idle time and

from where they move to the operations to be

processed;

 The time-lag is the travel time needed by a machine to

return to the waiting area after processing an operation

liberating the working area for further machine which

will perform the next operation.

 The switching time: which corresponds to the machine

𝑀𝑗,𝑜,𝑚 (𝑀𝑗,𝑜,𝑚 = 𝑀𝑗′,𝑜′,𝑚) travel from the operation 𝑂𝑗,𝑜

to the operation 𝑂𝑗′,𝑜′ locations;

 Classical shop scheduling assumptions;

 The objective function is to minimize the makespan

Cmax (the earliest completion time of the last

operation).

5.1.2 Non-oriented disjunctive graph

The FJSPGTL instances can be represented by a disjunctive

graph 𝐺 = (𝑉, 𝐴, 𝐸), where 𝑉 is a set of nodes, 𝐴 is the set of

arcs that represent the conjunctions (oriented) and 𝐸 is the set of

edges that represent disjunctive (non-oriented) arcs. The sets

𝑉, 𝐴 and 𝐸 are formed as follows: A node is created in the set 𝑉

for each operation 𝑂𝑗,𝑜 in the problem, plus a node O (named

the source) that represents a fictitious operation performed

before all others, and the node * (named the sink) is a fictitious

operation performed after all others.

For all successive operations of the same job, an arc is created

in the set 𝐴; this arc length is 𝑝𝑗,𝑜 + 𝑇𝐿𝑚𝑖𝑛
(𝑗,𝑜),(𝑗,𝑜+1),𝑚, where

𝑝𝑗,𝑜 represents the processing time of the operation 𝑂𝑗,𝑜 . These

arcs represent the precedence and minimum time-lags

constraints between operations of the same job. Minimum time-

lags constraints between operations 𝑂𝑗,𝑜 𝑎𝑛𝑑 𝑂𝑗′,𝑜′ belonging to

different jobs, are modeled by extra arcs and it is weighted with

𝑝𝑗,𝑜 + 𝑇𝐿𝑚𝑖𝑛
(𝑗,𝑜),(𝑗′,𝑜′),𝑚. For every two operations that can be

processed by the same machine, an edge is created in the set 𝐸,

i.e. this edge represents the disjunction between these operations

which is a part of the sub-set of 𝐸. This sub-set contains edges

linking all the operations performed by the same machine. After

orientation, the length of these arcs is equal to the processing

time plus the switching time modeled as minimum time-lag

𝑝𝑗,𝑜 + 𝑇𝐿𝑚𝑖𝑛
(𝑗,𝑜),(𝑗′,𝑜′),𝑚.

Maximal time-lags constraints are represented by negative arc

cost in the disjunctive graph from one operation to the previous

one. The negative length of the arc is equal to the duration of

the previous operation plus the maximal time-lag value

−(𝑝𝑗,𝑜 + 𝑇𝐿𝑚𝑎𝑥
(𝑗,𝑜),(𝑗′,𝑜′),𝑚).

Without loss of generality and for more clarity, let us consider a

simple example of FJSPGTL representing the problem studied

which is composed of 6 jobs which have 7 operations per each.

The specific minimal time-lags between operations plus the

machine processing time are described in Table 2. And the

maximal time-lags are all set to ∞. The Table 1 gives the set of

compatible machines (ranging from 𝑀1 to 𝑀7) and the

processing times 𝑝𝑗,𝑜 for all operations 𝑂𝑗,𝑜 for 1 ≤ 𝑗 ≤ 6 and

1 ≤ 𝑜 ≤ 7.

Table 1. Example of a FJSP. Each couple 𝑴𝒎(𝒑𝒋,𝒐)refers to

the possible machine assignment for an operation and the

corresponding processing time

Operation Plan Compatible machines 𝑀𝑚(𝑝𝑗,𝑜)

𝑂𝑗,1 𝑀1(26.7), 𝑀3(88.9)

𝑂𝑗,2 𝑀5(66.7)

𝑂𝑗,3 𝑀7(20)

𝑂𝑗,4 𝑀1(26.7), 𝑀3(88.9)

𝑂𝑗,5 𝑀2(21.6), 𝑀4(15.9)

𝑂𝑗,6 𝑀1(13.3)

𝑂𝑗,7 𝑀6(8.5)

The minimal time-lags between operations jobs are as follows:

 For all the jobs, a minimal time-lag between each

consecutive operations is 𝑇𝐿𝑚𝑖𝑛
(𝑗,𝑜),(𝑗′,𝑜′),𝑚. This value

depends on the machine 𝑚 assigned to the origin

operation 𝑂𝑗,𝑜. Therefore the conjunction arc is

 valuated as follows:

𝜏(𝑗,1),(𝑗,2),𝑚 = 𝑝(𝑗,1) + 𝑇𝐿𝑚𝑖𝑛
(𝑗,1),(𝑗,2),𝑚 .

For example, the minimal time-lag from the end of Oj,1

to Oj,2 is 𝑇𝐿𝑚𝑖𝑛
(𝑗,1),(𝑗,2),𝑚 the value depends on the

machine m assigned to Oj,1:

 M1 is the assigned machine: 𝑇𝐿𝑚𝑖𝑛
(𝑗,1),(𝑗,2),𝑀1

=

0.22; 𝜏(𝑗,1),(𝑗,2),𝑀1
=26.7 + 0.22

 M3 is the assigned machine: 𝑇𝐿𝑚𝑖𝑛
(𝑗,1),(𝑗,2),𝑀3

=

0.20; 𝜏(𝑗,1),(𝑗,2),𝑀3
= 88.9 + 0.20

 For the job 𝑗 ∈ {1,2,4,5}, a minimal time-lag from the

end of Oj,5 to Oj+1,1 is 𝑇𝐿𝑚𝑖𝑛
(𝑗,5),(𝑗+1,1),𝑚 and the

corresponding arc is valued 𝜏(𝑗,5),(𝑗+1,1),𝑚 = 𝑝(𝑗,5) +

𝑇𝐿𝑚𝑖𝑛
(𝑗,5),(𝑗+1,1),𝑚

 For the job 𝑗 ∈ {1,2,4,5}, a minimal time-lag from the

end of Oj,7 to Oj+1,6 is 𝑇𝐿𝑚𝑖𝑛
(𝑗,7),(𝑗+1,6),𝑚 and the

corresponding arc is valued 𝜏(𝑗,7),(𝑗+1,6),𝑚 = 𝑝(𝑗,7) +

𝑇𝐿𝑚𝑖𝑛
(𝑗,7),(𝑗+1,6),𝑚

 For the job 𝑗 ∈ {1,4}, a minimal time-lag from Oj+2,5 to

Oj,6 is 𝑇𝐿𝑚𝑖𝑛
(𝑗+2,5),(𝑗,6),𝑚 and the corresponding arc is

valued 𝜏(𝑗+2,5),(𝑗,6),𝑚 = 𝑝(𝑗+2,5) + 𝑇𝐿𝑚𝑖𝑛
(𝑗+2,5),(𝑗,6),𝑚.

Table 2 lists the Roman numerals and the corresponding

values of minimal time-lags that depend on the machines.

Table 2. The weight values of the arcs between operations

𝝉(𝒋,𝟏),(𝒋,𝟐),𝒎 {𝑴𝟏: 𝟐𝟔. 𝟗𝟐, 𝑴𝟑: 𝟖𝟗. 𝟏}

𝝉(𝒋,𝟐),(𝒋,𝟑),𝒎 {𝑴𝟓: 𝟔𝟔. 𝟗𝟖}

𝝉(𝒋,𝟑),(𝒋,𝟒),𝒎 {𝑴𝟕: 𝟐𝟎. 𝟐𝟏}

𝝉(𝒋,𝟒),(𝒋,𝟓),𝒎 {𝑴𝟏: 𝟐𝟔. 𝟗𝟐, 𝑴𝟑: 𝟖𝟗. 𝟏}

𝝉(𝒋,𝟓),(𝒋,𝟔),𝒎 {𝑴𝟐: 𝟐𝟏. 𝟖𝟐, 𝑴𝟒: 𝟏𝟖. 𝟏}

𝝉(𝒋,𝟔),(𝒋,𝟕),𝒎 {𝑴𝟏: 𝟏𝟑. 𝟓𝟏}

𝝉(𝒋,𝟓),(𝒋+𝟏,𝟏),𝒎 {𝑴𝟐: 𝟐𝟏. 𝟖𝟐, 𝑴𝟒: 𝟏𝟖. 𝟏}

𝝉(𝒋,𝟕),(𝒋+𝟏,𝟔),𝒎 {𝑴𝟔: 𝟖. 𝟕𝟏}

𝝉(𝒋+𝟐,𝟓),(𝒋,𝟔),𝒎 {𝑴𝟐: 𝟐𝟏. 𝟖𝟑, 𝑴𝟒: 𝟐𝟎. 𝟏}

A part of the non-oriented disjunctive graph illustrating this

example is given in Figure 3. In this graph, an arc (in full line)

between two successive operations (Oj,o, Oj,o+1) represents the

precedence (routing) constraint of the Job j. It is not weighted

by any distance between these operations as no machines are

assigned yet. Each pair of disjunctive arcs is represented with a

dotted edge and represents the constraint between two

operations sharing the same possible machine resource.

O3,1 O3,2 O3,3 O3,4

O2,1 O2,2 O2,3 O2,4

O1,1 O1,2 O1,3 O1,4

Figure 3. Illustration of a part of a problem with 6 jobs and

7 machines represented with disjunctive graph

A solution is an oriented conjunctive-disjunctive graph that

includes arcs only. As the FJSP is an assignment and a

scheduling problem, first, a machine assignment is done as

shown in Figure 4. Such an assignment is represented by a

vector MA (Machine Assignment). Each element of MA is the

number of the machine assigned to a given operation. Therefore,

a possible representation of the assignment shown in Figure 4

would be in this way: {1 5 7 1 4 1 6 1 5 7 1 4 1 6 1 5 7 1 4 1 6 1

5 7 1 4 1 6 1 5 7 1 4 1 6 1 5 7 1 4 1 6}. This vector means that

the first operation of Job 1 is processed on Machine M1; the

second operation of Job 1 is processed by machine M5; the third

operation of Job 1 is proceeded by machine M7, and so on for all

the jobs.

O3,1

M1

O3,2

M5

O3,3

M7

O3,4

M1

O2,1

M1

O2,2

M5

O2,3

M7

O2,4

M1

O1,1

M1

O1,2

M5

O1,3

M7

O1,4

M1

26.92

Figure 4. Illustration of a part of the 6 jobs and 7 machines

problem with a disjunctive graph with the assignment of

only one machine to each operation

Figure 4 shows a part of the new non-oriented disjunctive graph

after machine assignments. The relevant edges to this

assignment are still present, and the disjunctive edges that are

not relevant have been removed since they are not involved in

the schedule. Thus, O1,1 and O1,4 should be scheduled on the

same machine M1, so there is still an edge linking these

operations.

When no time-lags are specified (for example between one

operation and the dummy operation O of the graph), it is

possible to assume, without loss of generality, to have null

minimal time-lags and infinite maximal time-lags. The negative

arcs representing infinite maximal time-lags are ignored in

graph representation in the remainder of this article, since there

is no interest in considering infinite maximal time-lags. The arc

between successive operations of one job includes the

processing time and minimum time-lags constraints as

illustrates the Figure 4. The duration of this arc is equal to the

processing time plus the minimal time-lags duration. Minimal

time-lags are also included in disjunctive arcs: these arcs are

weighted with the processing time of the operation at the

beginning of the arc plus the minimum time-lag.

Finally, the acyclic conjunctive-disjunctive graph of a solution

is given in Figure 5. In this graph, Arcs in bold constituted the

critical path, and underlined numbers represent the earliest

starting times of operations; all pairs of disjunctive edges are

reduced to one arc and represent the sequence of operations

processed on the same machine.

These disjunctive edges (arcs between operations of the same or

different jobs which use the same machines) define the

operations sequence on machines. The graph of Figure 5 is a

solution in which:

- on machine M1 the sequence is: O1,1, O4,1; O1,4, O2,1;

O4,4, O5,1; O2,4, O3,1; O5,4, O6,1; O3,4, O1,6; O6,4, O2,6; O4,6,

O5,6; O3,6, O6,6;

- no operations scheduled on machine M2;

- no operations scheduled on machine M3;

- on machine M4 the sequence is: O1,5, O4,5; O2,5, O5,5;

O3,5, O6,5;

- on machine M5 the sequence is: O1,2, O4,2; O2,2, O5,2;

O3,2, O6,2;

- on machine M6 the sequence is: O1,7, O4,7; O2,7, O5,7;

O3,7, O6,7;

- on machine M7 the sequence is: O1,3, O4,3; O2,3, O5,3;

O3,3, O6,3.

O3,1

M1

O3,2

M5

O3,3

M7

O3,4

M1

O3,5

M4

O3,6

M1

O3,7

M6

O2,1

M1

O2,2

M5

O2,3

M7

O2,4

M1

O2,5

M4

O2,6

M1

O2,7

M6

O1,1

M1

O1,2

M5

O1,3

M7

O1,4

M1

O1,5

M4

O1,6

M1

O1,7

M6

O

O6,1

M1

O6,2

M5

O6,3

M7

O6,4

M1

O6,5

M4

O6,6

M1

O6,7

M6

O5,1

M1

O5,2

M5

O5,3

M7

O5,4

M1

O5,5

M4

O5,6

M1

O5,7

M6

O4,1

M1

O4,2

M5

O4,3

M7

O4,4

M1

O4,5

M4

O4,6

M1

O4,7

M6

18.1

18.1

18.1

18.1

0
26.92 93.9

114.11
141.03 481.65 495.17

159.13
186.07 253.13 273.35 300.29 535.69 577.96

320.39
347.33 414.39 434.61 461.55 591.56 605.1

26.95
94.05 161.03 186.1 213.02

555.71 569.23

231.12 258.06 325.12
347.41 374.35 577.94 591.48

394.45 421.39 488.45 508.67 535.61 605.15 618.69

*

627.41

Figure 5. A schedule of the FJSP. Bold-face arcs show a critical path whose length, i.e.: the makespan, is 627.41

Since each operation belongs to one job only, a common

representation of a solution consists in giving the job sequence

on machines. With such notation, the previous solution is noted:

Machine 1: job 1, job 4, job 1…; Machine 4: job 1, job 4…, etc.

However, [Bierwirth, 1995] introduces an alternative

representation as a sequence of job numbers. Based on his

proposal, the solution of Figure 5 is encoded to: {1 4 1 1 1 4 1 2

4 4 4 2 5 2 2 5 2 3 5 5 5 6 3 3 6 3 3 1 1 6 6 6 2 2 4 4 5 3 5 3 6

6}. A representation that is known by: sequence with repetition.

Such sequence is represented by a vector OS (Operation

Selection), read from left to right. In this vector, the first “1”

corresponds to the first operation of Job 1; the second value “4,”

refers to the first operation of Job 4; the third value is the second

operation of Job 1, followed by the third operation of this Job 1,

and so on. A greedy algorithm or a metaheuristic can manage

this sequence effectively because it makes it possible to create

an acyclic-oriented disjunctive graph. Please note that the same

oriented disjunctive graph can be represented by several such

sequences. In the Figure 6, a part of these data structures are

represented.

Operation Selection

 (OS)

Machine Assignment

 (MA)

𝑂1,1 𝑂4,1 𝑂1,2 𝑂1,3 𝑂1,4 𝑂4,2 𝑂1,5 𝑂2,1 𝑂4,3 𝑂4,4 𝑂4,5 𝑂2,2 𝑂5,1 𝑂2,3 𝑂2,4 𝑂5,2 𝑂2,5 𝑂3,1 𝑂5,3 𝑂5,4 𝑂5,5

1 4 1 1 1 4 1 2 4 4 4 2 5 2 2 5 2 3 5 5 5

𝑀1 𝑀1 𝑀5 𝑀7 𝑀1 𝑀5 𝑀4 𝑀1 𝑀7 𝑀1 𝑀4 𝑀5 𝑀1 𝑀7 𝑀1 𝑀5 𝑀4 𝑀1 𝑀7 𝑀1 𝑀4

1 1 5 7 1 5 4 1 7 1 4 5 1 7 1 5 4 1 7 1 4

Figure 6. Coding of a solution

After presenting the disjunctive graph and solutions coding, the

metaheuristic explained in the next section allows solution

space exploration.

5.2 Greedy Randomized Adaptive Search Procedure (GRASP)

The GRASP metaheuristic explores the solution space. This

metaheuristic was proposed by [Feo et Resende, 1995], and it’s

a multi-start metaheuristic. It consists of the generation of a

solution using a randomized construction heuristic; then, this

solution is improved using a local search. A classical GRASP is

proposed (Algorithm 1). f(s) refers to the objective function

optimized in the process as the makespan Cmax.

Algorithm 1: GRASP.
Output

S* : Best found solution;

Variables

S : A temporary solution;

BEGIN

1. WHILE stop criteria not met DO

2. S := Construction_Phase;

3. S := Local_Search_Phase;

4. S*:= Best solution found;

5. End WHILE

6. Return S*;

END

5.2.1 Construction phase

This phase aims to build an initial solution by assigning and

scheduling one operation at a time, using a greedy randomized

heuristic. As described by [Binato et al., 2000] for the JSP, at

each iteration, a Restricted Candidate List (RCL) is built from

the set containing the operations already scheduled. An

operation is selected from this set and added to the RCL under

the criteria of “which of the already scheduled operations

represent the smallest increase in the makespan”. Let’s consider

𝑂𝑗,𝑜 the oth operation of the job j and 𝑂𝑗,𝑜 is processed on the

machine 𝑀𝑗,𝑜,𝑚 from the set 𝑀𝑗,𝑜 of the available machines for

𝑂𝑗,𝑜 . The set of scheduled operations is noted Os, while

candidate operations to be scheduled is noted Oc. The candidate

list Oc of operations to be processed is built at each iteration

from a list L of operations that are not scheduled yet. The next

operation to be scheduled is chosen randomly from RCL, all the

operations have equal probabilities to be chosen. The algorithm

used to generate an initial solution is almost similar to the

construction phase algorithm proposed by [Kemmoé-Tchomté

et al., 2017]. Still, the difference is that we consider the time-

lags and switching time constraints.

5.2.2 Evaluation phase: Longest path

The evaluation algorithm computes the earliest start time of

each operation, then the end date of the last operation in the

schedule. It's used in the local search phase to evaluate a

possible solution after the initial solution perturbation.

Algorithm 2 presents the evaluation of the longest path for the

problem described above.

Algorithm 2: Evaluation.
Input

Data : Problem information;

B : Bierwirth vector;

BM : Affectation vector;

Output

Cmax : Makespan;

PERE : Operations predecessor

that conditions their

start date;

OperationsMachine : The operations machine

affectation;

Variables

EarliestStart : Operations earliest start

date;

PERE : Operations predecessor

that conditions their

start date;

OperationsMachine : The operations machine

affectation;

MachineOperation : The latest operation on a

machine;

(j,o),(k,l) : job number, operation

number

etapeJob : Operation to be scheduled

for each job

machine,m : The machine assigned to

the current operation

d,dPD : End date of conjonctif

and disjonctif

predecessor respectively;

pere, Dpere : Conjonctif and

disjonctive predecessor;

BEGIN

1. Initialization of all variables;

2. FOR i:=0 TO the total number of operation

DO

3. d = 0, dPD = 0;

4. pere=(-1,-1), Dpere=(-1,-1);

5. j = B[i], o = etapeJob[j];

6. machine = BM[i];

7. For all (k,l)conjonctifs

Predecessors of (j,o) DO

8. m = OperationsMachine[j,o];

9. IF d < (EarliestStart[k,l]+

 ProcessingTime[k,l,m] +

TimeLags[k,l,j,o,m]) DO

10. d = (EarliestStart[k,l]+

ProcessingTime[k,l,m] +

TimeLags[k,l,j,o,m];

11. pere = (k,l);

12. END IF

13. END FOR

14. IF (j,o) got a disjunctive

predecessor DO

15. (k,l)=MachineOperation[machine];

16. Dpere = (k,l);

17. dPD =(EarliestStart[k,l]+

ProcessingTime[k,l,m] +

SwitchingTime[k,l,j,o,m];

18. END IF

19. IF dPD > d DO

20. pere = Dpere;

21. d = dPD;

22. END IF

23. EarliestStart[j,o] = d;

24. PERE[j,o] = pere;

25. MachineOperation[machine]=(j,o);

26. END FOR

27. Compute Cmax; //The end date of the last

operation.

28. RETURN Cmax,PERE,OperationsMachine,

EarliestStart;

END

5.2.3 Local search phase

After generating the initial solution, a local search is applied to

improve the quality of the solutions. It’s based on the critical

path, where we exchange the order of two consecutive

operations processed by the same machine and/or change the

machine allocation of an operation in the critical path. The

algorithm 4 (Local_Search_Dis) explores the critical path from

the sink node * to the source node O. The possible permutations

that could improve the solution are saved, if the evaluation of

the new solution (the permutation is applied) indicates an

improvement of the solution, this new solution is the best

solution and so on. The evaluation of FJSP relies on a longest

path computation (Algorithm 2).

Algorithm 3: Local_Search.
Input/Output

Data : Problem information;

S : Initial solution;

Variables

(j,o) : operation on the critical

path;

S1,S2 : temporary solutions;

BEGIN

1. Local_Search_Dis(S,Data);

2. (j,o)= The last operation of

the critical path;

3. WHILE (j,o)!=(0,0) DO

4. IF (Number of available machines for

(j,o)>1) DO

5. S1 = S;

6. FOR EACH machine different

 Than the current one DO

7. Change the machine

affected to op in S1;

8. Local_Search_Dis(S1,Data);

9. IF f(S1)<f(S) DO

10. S = S1;

11. (j,o) = The last operation of
the critical path of S;

12. ELSE

13. (j,o)= The predecessor of

(j,o)on the critical path of S;

14. END IF

15. END FOR

16. ELSE

17. (j,o) = The predecessor of (j,o)on

the critical path of S;

18. END IF

19. END WHILE

 END

For this described GRASP metaheuristic, 500 is the iteration

number chosen to obtain a solution. The choice of this number

comes from obtaining good solutions in terms of quality and

computation time, starting from 300 or 500 iterations,

depending on the instance.

Algorithm 4: Local_Search_Dis.
Input/Output

S : initial solution;

Data : Problem information;

Variables

(j,o),(k,l) : operation and predecessor on

critical path;

S_temp : temporary solution;

m : machine assigned to the

operation (j,o) in the critical

path;

BEGIN

1. Cmax = f(S);

2. (j,o)= The last operation of the critical
path;

3. S_temp = S;

4. WHILE (j,o)!=(0,0) DO

5. m = Machine assigned to (j,o);

6. IF (Number of critical path operations

processed by m >1) Do

7. (k,l)= disjunctive predecessor of

(j,o);

8. Apply permutation of (j,o) and (k,l)

in S_temp;

9. Evaluation of S_temp;

10. IF f(S_temp)<f(S) DO

11. S = S_temp;

12. (j,o)= The last operation of the
critical path;

13. END IF

14. ELSE

15. (j,o) = predecessor of (j,o) on the

critical path;

16. END IF

17. END WHILE

END

6 RESULTS AND ANALYSIS

In this section, we present a comparison between the results

obtained by the Mixed Integer Linear Programming (MILP)

[Aallaoui et al., 2022] and the GRASP metaheuristic described

in the previous section based in the instances described in Table

3. The number of iterations chosen for the GRASP is 500.

Table 3. Generated instances description

Instance (Ins) 1 2 3 4 5 6

Jobs 6 12 12 18 24 24

Operations / job 7 7 14 7 7 7

Machines 7 7 10 7 7 10

The instances used to test the models are instances generated

from the real problem. Table 3 below presents 6 instances used

to compare the MILP and the GRASP in terms of the quality of

the solution and the computation time (CPU).

The resolution of the MILP was done with CPLEX 20.1 with a

time limit of one hour, and GRASP metaheuristic was coded on

Python. The execution of both models was on a machine with a

processor i7 ~ 2.8 GHz and 16 Go of Ram.

Table 4 presents the results and the gap between the makespan

obtained with MILP and the makespan obtained with GRASP

calculated based on equation (5):

𝑔𝑎𝑝(%) = (
𝐶𝑚𝑎𝑥𝐺𝑅𝐴𝑆𝑃

𝐶𝑚𝑎𝑥𝑀𝐼𝐿𝑃

− 1) ∗ 100% (5)

Table 4. Results

The results show that the GRASP can reach optimal solutions in

a low CPU time but only for some instances. In addition, the

solutions obtained with CPLEX (MILP) within the 1-hour limit

of execution are outperformed by the solutions obtained by the

GRASP in terms of quality and computation time. However, for

the instances that CPLEX found an optimal solution, the

GRASP needed more iterations (more time) to explore the

solution space.

7 CONCLUSION

In this study, a metaheuristic is proposed to tackle the Flexible

Job Shop Problem with generic time-lags. It’s a GRASP

metaheuristic relying on a construction heuristic to generate a

solution to minimize the makespan and a local search phase to

improve this solution. The results show that the proposed

metaheuristic provides valuable results for some instances and

good results for other instances in terms of solution quality.

To enhance the results, several techniques can be studied to be

applied to our case, such as improving the GRASP

metaheuristic by adding a multi-level evolutionary local search

with an estimation procedure. This technique will make the

local search phase fast and will allow the solution space

exploration rather fast.

Hence, in future studies, we will develop a multi start GRASP

with a multi-level evolutionary local search metaheuristic to

improve the results and test it using the FJSP classical instances.

8 REFERENCES

Aallaoui, S., Azzamouri, A., & Tchernev, N. (2022). Mixed

Integer Linear Programming Model for Open Pit Mine

Scheduling. IFAC-PapersOnLine, 55(10), 2276-2281.

Azzamouri, A., Fénies, P., Fontane, F., & Giard, V. (2018).

Scheduling of open-pit phosphate mine

extraction. International journal of production

research, 56(23), 7122-7141.

Bierwirth, C. (1995). A generalized permutation approach to job

shop scheduling with genetic algorithms. Operations-

Research-Spektrum, 17(2), 87-92.

Binato, S., Hery, W. J., Loewenstern, D. M., & Resende, M. G.

C. (2000). A greedy randomized adaptive search procedure

for job shop scheduling. Essays and Surveys in

Metaheuristics, ATT Labs Research Technical Report.

Błażewicz, J., Domschke, W., & Pesch, E. (1996). The job shop

scheduling problem: Conventional and new solution

techniques. European journal of operational

research, 93(1), 1-33.

Blom, M., Pearce, A. R., & Stuckey, P. J. (2019). Short-term

planning for open pit mines: a review. International Journal

of Mining, Reclamation and Environment, 33(5), 318-339.

Brucker, P., & Schlie, R. (1990). Job-shop scheduling with

multi-purpose machines. Computing, 45(4), 369-375.

Caumond, A., Lacomme, P., & Tchernev, N. (2008). A memetic

algorithm for the job-shop with time-lags. Computers &

Operations Research, 35(7), 2331-2356.

Chaudhry, I. A., & Khan, A. A. (2016). A research survey:

review of flexible job shop scheduling

techniques. International Transactions in Operational

Research, 23(3), 551-591.

Dauzère-Pérès, S., & Paulli, J. (1997). An integrated approach

for modeling and solving the general multiprocessor job-

shop scheduling problem using tabu search. Annals of

Operations Research, 70, 281-306.

Fu, J., Taniguchi, T., & Karasawa, Y. (2004). The largest

eigenvalue characteristics for MIMO channel with spatial

correlation. Electronics and Communications in Japan (Part

I: Communications), 87(12), 18-27.

Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The

complexity of flowshop and jobshop

scheduling. Mathematics of operations research, 1(2), 117-

129.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R.

(1979). Optimization and approximation in deterministic

sequencing and scheduling: a survey. In Annals of discrete

mathematics (Vol. 5, pp. 287-326). Elsevier.

Kemmoé-Tchomté, S., Lamy, D., & Tchernev, N. (2017). An

effective multi-start multi-level evolutionary local search for

the flexible job-shop problem. Engineering Applications of

Artificial Intelligence, 62, 80-95.

Kozan, E., & Liu, S. Q. (2016). A new open-pit multi-stage

mine production timetabling model for drilling, blasting and

excavating operations. Mining Technology, 125(1), 47-53.

Lacomme, P., Tchernev, N., & Huguet, M. J. (2011,

September). Dedicated constraint propagation for Job-Shop

problem with generic time-lags. In ETFA2011 (pp. 1-7).

IEEE.

Lamghari, A., & Dimitrakopoulos, R. (2016). Progressive

hedging applied as a metaheuristic to schedule production in

open-pit mines accounting for reserve

uncertainty. European Journal of Operational

Research, 253(3), 843-855.

Mohtasham, M., Mirzaei-Nasirabad, H., Askari-Nasab, H., &

Alizadeh, B. (2021). A multi-objective model for fleet

allocation schedule in open-pit mines considering the impact

of prioritising objectives on transportation system

performance. International Journal of Mining, Reclamation

and Environment, 35(10), 709-727.

Moradi Afrapoli, A., & Askari-Nasab, H. (2019). Mining fleet

management systems: a review of models and

algorithms. International Journal of Mining, Reclamation

and Environment, 33(1), 42-60.

Newman, A. M., Rubio, E., Caro, R., Weintraub, A., & Eurek,

K. (2010). A review of operations research in mine

planning. Interfaces, 40(3), 222-245.

Pinedo, M. L. (2012). Scheduling (Vol. 29). New York:

Springer.Roy, B., & Sussmann, B. (1964). Les problemes

d’ordonnancement avec contraintes disjonctives. Note ds, 9.

Xie, J., Gao, L., Peng, K., Li, X., & Li, H. (2019). Review on

flexible job shop scheduling. IET Collaborative Intelligent

Manufacturing, 1(3), 67-77.

Cmax CPU Time Cmax CPU Time

1 627.41 12.17 627.41 0.07 0

2 1205.56 172.3 1208.8 0.7 0.26875477

3 4467 3600 2540.7 3.8 -43.12290128

4 1782.19 1784.8 1897 1.32 6.442074077

5 2404.76 3600 2373.6 1.6 -1.295763403

6 4439.05 3600 2355.6 3.18 -46.93459186

Instance
MILP GRASP

GAP

