
Résumé – Cet article traite un problème d’ordonnancement des opérations et affectation des machines dans une mine à ciel 

ouvert pour atteindre les objectifs de production. Tout cela est contraint par : séquencement des opérations, accessibilité 

aux couches, compatibilité, disponibité et mouvements des machines. Le problème est modélisé comme un problème du Job 

Shop Flexible avec des time-lags génériques. Cet article introduit une modélisation du problème basée sur le graphe 

disjonctif et une méthode approchée Greedy Randomized Adaptive Search Procedure (GRASP) pour la résolution. Une 

comparaison entre cette dernière et un programme linéaire en nombre entier montre que cette méthode fournit des solutions 

de meilleures qualités.  

Abstract – This paper presents a solution for scheduling open-pit mining operations and machinery affectation to meet 

production goals. The problem is complex due to various constraints such as operation sequencing, machinery compatibility, 

machinery availability, and accessibility to layers. The solution uses a disjunctive graph and a GRASP algorithm to solve 

the problem modeled as a flexible job shop problem with generic time-lags between operations. The algorithm performance 

has been benchmarked against a Mixed Integer Linear Program and provides high-quality solutions via numerical 

experiments.  
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1 INTRODUCTION 

This article analyses the problems posed by the operational 

decisions related to ore extraction in an open-pit mine. 

Motivated by a scheduling problem in OCP Group, a phosphate 

ore extraction and fertilizer production world leader, this 

research deals with a short-term scheduling problem. It proposes 

an original modeling approach based on a flexible job shop and 

minimum time-lags. The Greedy Randomized Adaptive Search 

Procedure (GRASP) heuristic approach is used to solve the 

problem. 

We start by providing the characterizing features of the studied 

problem (§2) before presenting the suitable formalization for a 

theoretical scheduling problem and the related literature review 

(§3). Next, the framework based on a disjunctive graph model 

and the GRASP algorithm is proposed (§4). Section §5 deals 

with the computational evaluation of the framework, including 

industrial-based benchmarks, before concluding and promising 

directions for future research (§6). 

2 PROBLEM DEFINITION 

The integrated supply chain of OCP Group links the different 

processes of ore extraction, ore blending, phosphoric acid, 

fertilizer production, and export. It comprises three independent 

axes: the north, center, and south. This study focuses on the Ben 

Guerir mine in the center axis, where the phosphate deposit is 

composed of the accumulation of layers of different geological 

and chemical compositions natures. The sedimentary nature of 

the mine tolerates the extraction of a layer only if the upper level 

is already removed. As shown in Figure 1, from a transverse 

view, the deposit contains several panels, each panel is 

composed of a group of trenches, and each trench is made up of 

parcels (or blocks): rectangles of 4000m2 (40m * 100m) that 

contain alternate phosphate and waste blocks. Particular layers 

might not exist in some parcels due to geological factors. 
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Figure 1. Open-pit block model 

The extraction process results from the iteration of a sequence 

of elementary operations 𝑂𝑗,𝑜 performed on blocks by 

specialized or multipurpose machine 𝑀𝑗,𝑜,𝑚 from a set of 

machines 𝑀𝑗,𝑜 = {𝑀𝑗,𝑜,1, 𝑀𝑗,𝑜,2, . . . , 𝑀𝑗,𝑜,𝑀}. These resources are 

limited and urge the planner to find the best spatio-temporal 

machinery affectation. The decisions to be taken by the planner 

relate to [Azzamouri et al., 2018]: (i) The choice of parcels to 

be extracted knowing that operations are in progress in several 

parcels; (ii) The allocation of the machines available to perform 

these operations. The extraction process starts with recovering 

the ore and moving the waste from the trench in the middle of a 

given panel, which creates a void called a “Box-cut” (Figure 1). 

Then, the extraction continues simultaneously on the adjacent 

trenches by pushing the waste blocks into the void and 

recovering the ore from transporting it to the plant. For example, 

extracting a phosphate block covered by a single block of waste 

(e.g., a parcel that contains two blocks) means that the block will 

be extracted based on seven elementary operations. These 

operations are grouped into two stages, using the available 

machines as follows: (i) The first stage is dedicated to waste 

block recovery that consists of: {Site preparation for 

drilling: 𝑂𝑗,1}, {drilling: 𝑂𝑗,2}, {blasting: 𝑂𝑗,3}, {site 

preparation for stripping: 𝑂𝑗,4}, and {stripping : 𝑂𝑗,5}; (ii) The 

second stage dedicated to phosphate block recovery involving 

{stacking: 𝑂𝑗,6}, and {loading: 𝑂𝑗,7}. In this paper, it is assumed 

that all the panels have a “Box-Cut,” and the block extraction 

order has been made. The extraction process is constraint by 

several factors: 

 Precedence: That comes from geological nature of the 

mine dictates the necessity of the upper blocks’ 

removal to access the lower ones, the staircase 

extraction method that secures the process and the 

relations between elementary operations; 

 Resource availability: As a consequence of the multi-

purpose nature of the machinery, a machine may be 

busy executing an operation; 

 Machines motions: Each machine should return to the 

waiting area after processing an operation to free up 

space for another device. Depending on operation 

locations, it can also travel from one parcel to another. 

Indeed, the problem described above corresponds to the Hybrid 

Flow Shop Scheduling Problem (HFSP) [Pinedo, 2016]. 

However, in classical HFSP, each machine belonging to a given 

stage is used only at this stage. However, in the industrial 

problem considered, many machines are used at different stages 

during the parcel treatment. Therefore, the problem is modeled 

as a Flexible Job Shop Scheduling Problem (FJSP) in which 

time constraints restrict the minimum time distance between 

two successive operations belonging to the same job or two 

different jobs. 

3 LITERATURE REVIEW: INSIGHTS & CONTRIBUTIONS 

The production scheduling and short-term planning issues for 

open-pit mines have not received as much attention in the 

academic literature as the medium- and long-term perspectives 

have [Blom et al., 2019]. Yet, over the past few decades, a 

considerable amount of study has been done on scheduling 

[Pinedo, 2016]. An open-pit mine production schedule related 

to block sequencing is heavily studied in the literature, but the 

issue of determining the resources that enable such a schedule 

didn’t get as much attention. In this context, recent research in 

mine scheduling has focused on developing methods that can 

handle the complexity and uncertainty of real-world mining 

operations. Thus, [Kozan et Liu, 2016] proposed a mixed 

integer program to tackle a complex operational problem of 

multi-resource multi-stage mine production timetabling. The 

proposed approach maximizes the utilization of mining 

equipment and mining productivity. The authors demonstrate its 

effectiveness through a numerical case study and a practical 

implementation based on real-life mining data. However, 

[Lamghari et al, 2016] presented a progressive hedging 

approach for mine scheduling. The authors proposed a new 

method that considers the mining operations' uncertainty and 

reserve quality. They found that this approach can improve the 

efficiency of the mining operations and reduce the 

environmental impact. And for fleet management, [Mohtasham 

et al, 2021] present a mixed integer linear program to allocate 

trucks and shovels in an open-pit mine. They formulated this 

model to maximize fleet performance by maximizing 

production and minimizing the fuel consumption of the trucks. 

A copper mine case study has shown this model's effectiveness. 

These are examples of methods among many in the literature 

that addresses this problem. Furthermore, [Newman et al., 2010] 

present a review of operations research's application to mine 

planning. In many equipment routing and selection models, 

optimization is used, i.e., integer programming, to determine 

mine fleet size and allocation. In addition, many publications 

are about loading and haulage operations: shovel and truck 

allocation [Moradi Afrapoli et Askari-Nasab, 2019]. Simulation 

is also used to address problems like this; for example, 

[Azzamouri et al., 2018] used discrete event simulation to 

generate short and medium-term planning and machine 

allocation for an open-pit mine. 

The problem addressed in this study is classified as a difficult 

FJSP because of the generic time-lags constraints that must be 

considered between operations from the same and different jobs 

[Lacomme et al., 2011]. This complexity comes from the fact 

that the FJSP is an extension of the hard problem JSP, for which 

the literature suggests both exact and approximation methods 

[Blażewicz et al., 1996]. [Roy et Sussmann, 1964] established 

the disjunctive graph model, which is frequently the foundation 

of successful solutions approaches, which effectively models 

the relationship between operations. Additional constraints can 

be considered to represent the reality of the scheduling problem, 

like the paper of [Lacomme et al., 2011] which addresses this 

problem with generic time-lags that models general timing 

relations between jobs. Also, [Caumond et al., 2008] propose a 

solution to the same problem using a disjunctive graph and a 

memetic algorithm. The FJSP arises when one operation may be 

executed on many machines. Thus, a review of the existing 

solution methods is presented by [Chaudhry et Khan, 2016] and 

[Xie et al., 2019], and classify them into exact algorithms, 

heuristics, and metaheuristics. Improved versions of the 

GRASP metaheuristic are used to solve the problem, like 

[Kemmoé-Tchomté et al., 2017] who propose GRASP with a 

multi-level evolutionary local search (mELS) that provides 



valuable results in terms of computation times and quality. 

4 FLEXIBLE JOB SHOP PROBLEM WITH GENERIC TIME 

LAGS (FJSPGTL) 

4.1 FJSPGTL in the literature 

The FJSP problem, first introduced by [Brucker et Schlie, 

1990], has been widely studied in the literature and has many 

industrial applications. The FJSP with Generic Time-Lags 

(FJSPGTL) can be found in many applications since they result 

from technological or organizational constraints. Indeed, time-

lags can be used as restrictions enforcing minimal or maximal 

delays between two operations to model general timing relations 

between jobs, like start-start relations between jobs [Lacomme 

et al., 2011]. A FJSP scheduling problem is an extended form of 

a classical job shop scheduling problem (JSP), which is NP-hard 

[Garey et al., 1976]. The particularity of FJSP is that each 

operation related to a given job is processed by a machine 

selected in a set of compatible and available ones. The 

complexity of the FJSP suggests the adoption of heuristic 

methods producing reasonably good schedules in an acceptable 

execution time instead of seeking an exact solution. 

4.2 FJSPGTL settings 

Without loss of generality, each parcel can be considered as a 

job j. Therefore, the scheduling of open-pit phosphate mine 

extraction using the FJSPGTL can be formulated as follows: a 

set of J jobs that must be processed on a set of M machines. Each 

one of these jobs j involves a set of operations 𝑂𝑗 =

{𝑂𝑗,1, 𝑂𝑗,2, . . . , 𝑂𝑗,𝑘𝑗
} where 𝑘𝑗 refers to the number of operations 

of the job j. An operation 𝑂𝑗,𝑘𝑗
 must be processed in a pre-

determined order, and no pre-emption is allowed. Each 

operation is processed by one and only one machine from the 

set 𝑀𝑗,𝑜 = {𝑀𝑗,𝑜,1, 𝑀𝑗,𝑜,2, . . . , 𝑀𝑗,𝑜,𝑀} of the compatible 

machines. The processing time 𝑝𝑗,𝑜 that depends on the machine 

𝑀𝑗,𝑜,𝑚 allocated to 𝑂𝑗,𝑜 and the geological nature of the block in 

question. 

A time-lag can be defined between the finish time of a given 

operation 𝑂𝑗,𝑜  (denoted by 𝑓𝑡𝑂𝑗,𝑜
) and the start time of another 

operation 𝑂𝑗′,𝑜′  (denoted by 𝑠𝑡𝑂
𝑗′,𝑜′) using the following 

equation: 

𝑇𝐿𝑚𝑖𝑛
𝑂𝑗,𝑜,𝑂𝑗′,𝑜′

≤ 𝑠𝑡𝑂𝑗′,𝑜′ − 𝑓𝑡𝑂𝑗,𝑜
≤ 𝑇𝐿𝑚𝑎𝑥

𝑂𝑗,𝑜,𝑂𝑗′,𝑜′
 (1) 

With 𝑇𝐿𝑚𝑎𝑥
𝑂𝑗,𝑜,𝑂

𝑗′,𝑜′
≥ 𝑇𝐿𝑚𝑖𝑛

𝑂𝑗,𝑜,𝑂
𝑗′,𝑜′

 

In this formula 𝑇𝐿𝑚𝑖𝑛
𝑂𝑗,𝑜,𝑂

𝑗′,𝑜′
 represents the minimal time-lag 

and 𝑇𝐿𝑚𝑎𝑥
𝑂𝑗,𝑜,𝑂

𝑗′,𝑜′
is the maximal time-lag. The first part of this 

formula 𝑇𝐿𝑚𝑖𝑛
𝑂𝑗,𝑜,𝑂

𝑗′,𝑜′
≤ 𝑠𝑡𝑂

𝑗′,𝑜′
− 𝑓𝑡𝑂𝑗,𝑜

 means that 𝑂𝑗′ ,𝑜′  

cannot start before at least 𝑇𝐿𝑚𝑖𝑛
𝑂𝑗,𝑜,𝑂

𝑗′,𝑜′
 units after the end of 

𝑂𝑗,𝑜 . The second part of the formula 𝑠𝑡𝑂
𝑗′,𝑜′ − 𝑓𝑡𝑂𝑗,𝑜

≤

𝑇𝐿𝑚𝑎𝑥
𝑂𝑗,𝑜,𝑂

𝑗′,𝑜′
 means that 𝑂𝑗′,𝑜′  cannot be started later than 

𝑇𝐿𝑚𝑎𝑥
𝑂𝑗,𝑜,𝑂

𝑗′,𝑜′
 units after the end of 𝑂𝑗,𝑜 . When there is a 

classical precedence constraint between two operations, the 

value of minimum time-lag is set to 0, and the value of 

maximum time-lag is set to ∞. When there is no constraint 

between two operations, both the minimum and the maximum 

time-lags are set to ∞. 

According to the 𝛼|𝛽|𝛾 notation introduced by [Graham et al., 

1976] the problem can be represented by 𝐹𝐽𝑐|𝑙𝑂𝑗,𝑜,𝑂
𝑗′,𝑜′ |𝐶𝑚𝑎𝑥. 

Time-lags between the start and completion times of different 

activities have to be observed in numerous scheduling problems, 

including the Resource Constrained Project Scheduling 

Problem (RCPSP), where resource consumption is addressed 

[Brucker et al., 1999]. They result from technological or 

organizational constraints in practice. Besides minimum time-

lags, maximum time-lags might be given, which occurs in the 

chemical and food industries. 

5 A GRASP ALGORITHM FOR MINING SCHEDULING 

The framework is based on a GRASP algorithm (for job 

sequence generation on machines) coupled with a powerful 

local search procedure. The problem is modeled as a non-

oriented disjunctive graph. Since a job sequence on machines is 

generated, obtaining an oriented disjunctive graph is possible. 

A Bellman like longest path algorithm permits to compute the 

earliest completion time of the last operation qualified as the 

makespan 𝐶𝑚𝑎𝑥 (Figure 2). 

5.1 Graph modeling 

This section aims to propose a graph modeling of open-pit 

phosphate mine extraction using the graph model proposed by 

[Dauzère-Pérès et Paulli, 1997] for the FJSP, which is based on 

the [Roy et Sussmann, 1964] disjunctive graph for the job 

scheduling problems. The time-lags constraints are also 

included. 
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Figure 2. Description of the framework for FJSPGTL 

5.1.1 Assumptions 

As stated in the introduction, the extraction process is based on 

seven principal elementary operations. The first five operations 

allow the removal of the waste block, and the last two ones are 

dedicated to ore recovery. In addition, we consider that:  

 The job j corresponds to the accumulation of parcels 

containing the set of layers (waste and phosphate 

layers);  

 The existence of a waiting machine area: a location 

where machines are located during their idle time and 

from where they move to the operations to be 

processed;  

 The time-lag is the travel time needed by a machine to 

return to the waiting area after processing an operation 

liberating the working area for further machine which 

will perform the next operation. 

 The switching time: which corresponds to the machine 

𝑀𝑗,𝑜,𝑚 (𝑀𝑗,𝑜,𝑚 = 𝑀𝑗′,𝑜′,𝑚) travel from the operation 𝑂𝑗,𝑜 

to the operation 𝑂𝑗′,𝑜′ locations; 

 Classical shop scheduling assumptions; 

 The objective function is to minimize the makespan 

Cmax (the earliest completion time of the last 

operation). 



5.1.2 Non-oriented disjunctive graph 

The FJSPGTL instances can be represented by a disjunctive 

graph 𝐺 =  (𝑉, 𝐴, 𝐸), where 𝑉 is a set of nodes,  𝐴 is the set of 

arcs that represent the conjunctions (oriented) and 𝐸 is the set of 

edges that represent disjunctive (non-oriented) arcs. The sets 

𝑉, 𝐴 and 𝐸 are formed as follows: A node is created in the set 𝑉 

for each operation 𝑂𝑗,𝑜  in the problem, plus a node O (named 

the source) that represents a fictitious operation performed 

before all others, and the node * (named the sink) is a fictitious 

operation performed after all others. 

For all successive operations of the same job, an arc is created 

in the set 𝐴; this arc length is 𝑝𝑗,𝑜 + 𝑇𝐿𝑚𝑖𝑛
(𝑗,𝑜),(𝑗,𝑜+1),𝑚, where 

𝑝𝑗,𝑜 represents the processing time of the operation 𝑂𝑗,𝑜 . These 

arcs represent the precedence and minimum time-lags 

constraints between operations of the same job. Minimum time-

lags constraints between operations 𝑂𝑗,𝑜  𝑎𝑛𝑑 𝑂𝑗′,𝑜′  belonging to 

different jobs, are modeled by extra arcs and it is weighted with 

𝑝𝑗,𝑜 + 𝑇𝐿𝑚𝑖𝑛
(𝑗,𝑜),(𝑗′,𝑜′),𝑚. For every two operations that can be 

processed by the same machine, an edge is created in the set  𝐸, 

i.e. this edge represents the disjunction between these operations 

which is a part of the sub-set of 𝐸. This sub-set contains edges 

linking all the operations performed by the same machine. After 

orientation, the length of these arcs is equal to the processing 

time plus the switching time modeled as minimum time-lag 

𝑝𝑗,𝑜 + 𝑇𝐿𝑚𝑖𝑛
(𝑗,𝑜),(𝑗′,𝑜′),𝑚.  

Maximal time-lags constraints are represented by negative arc 

cost in the disjunctive graph from one operation to the previous 

one. The negative length of the arc is equal to the duration of 

the previous operation plus the maximal time-lag value 

−(𝑝𝑗,𝑜 + 𝑇𝐿𝑚𝑎𝑥
(𝑗,𝑜),(𝑗′,𝑜′),𝑚). 

Without loss of generality and for more clarity, let us consider a 

simple example of FJSPGTL representing the problem studied 

which is composed of 6 jobs which have 7 operations per each. 

The specific minimal time-lags between operations plus the 

machine processing time are described in Table 2. And the 

maximal time-lags are all set to ∞. The Table 1 gives the set of 

compatible machines (ranging from 𝑀1 to 𝑀7) and the 

processing times 𝑝𝑗,𝑜 for all operations 𝑂𝑗,𝑜 for 1 ≤ 𝑗 ≤ 6 and 

1 ≤ 𝑜 ≤ 7.  

 

Table 1. Example of a FJSP. Each couple 𝑴𝒎(𝒑𝒋,𝒐)refers to 

the possible machine assignment for an operation and the 

corresponding processing time 

Operation Plan Compatible machines 𝑀𝑚(𝑝𝑗,𝑜) 

𝑂𝑗,1 𝑀1(26.7), 𝑀3(88.9) 

𝑂𝑗,2 𝑀5(66.7) 

𝑂𝑗,3 𝑀7(20) 

𝑂𝑗,4 𝑀1(26.7), 𝑀3(88.9) 

𝑂𝑗,5 𝑀2(21.6), 𝑀4(15.9) 

𝑂𝑗,6 𝑀1(13.3) 

𝑂𝑗,7 𝑀6(8.5) 

 

The minimal time-lags between operations jobs are as follows: 

 For all the jobs, a minimal time-lag between each 

consecutive operations is 𝑇𝐿𝑚𝑖𝑛
(𝑗,𝑜),(𝑗′,𝑜′),𝑚. This value 

depends on the machine 𝑚 assigned to the origin 

operation 𝑂𝑗,𝑜. Therefore the conjunction arc is 

 valuated as follows:  

𝜏(𝑗,1),(𝑗,2),𝑚 = 𝑝(𝑗,1) + 𝑇𝐿𝑚𝑖𝑛
(𝑗,1),(𝑗,2),𝑚 . 

For example, the minimal time-lag from the end of Oj,1 

to Oj,2 is 𝑇𝐿𝑚𝑖𝑛
(𝑗,1),(𝑗,2),𝑚 the value depends on the 

machine m assigned to Oj,1: 

 M1 is the assigned machine: 𝑇𝐿𝑚𝑖𝑛
(𝑗,1),(𝑗,2),𝑀1

= 

0.22; 𝜏(𝑗,1),(𝑗,2),𝑀1
=26.7 + 0.22 

 M3 is the assigned machine: 𝑇𝐿𝑚𝑖𝑛
(𝑗,1),(𝑗,2),𝑀3

= 

0.20; 𝜏(𝑗,1),(𝑗,2),𝑀3
= 88.9 + 0.20 

 For the job 𝑗 ∈ {1,2,4,5}, a minimal time-lag from the 

end of Oj,5 to Oj+1,1 is 𝑇𝐿𝑚𝑖𝑛
(𝑗,5),(𝑗+1,1),𝑚 and the 

corresponding arc is valued 𝜏(𝑗,5),(𝑗+1,1),𝑚 = 𝑝(𝑗,5) +

𝑇𝐿𝑚𝑖𝑛
(𝑗,5),(𝑗+1,1),𝑚 

 For the job 𝑗 ∈ {1,2,4,5}, a minimal time-lag from the 

end of Oj,7 to Oj+1,6 is 𝑇𝐿𝑚𝑖𝑛
(𝑗,7),(𝑗+1,6),𝑚 and the 

corresponding arc is valued 𝜏(𝑗,7),(𝑗+1,6),𝑚 = 𝑝(𝑗,7) +

𝑇𝐿𝑚𝑖𝑛
(𝑗,7),(𝑗+1,6),𝑚 

 For the job 𝑗 ∈ {1,4}, a minimal time-lag from Oj+2,5 to 

Oj,6 is 𝑇𝐿𝑚𝑖𝑛
(𝑗+2,5),(𝑗,6),𝑚 and the corresponding arc is 

valued 𝜏(𝑗+2,5),(𝑗,6),𝑚 = 𝑝(𝑗+2,5) + 𝑇𝐿𝑚𝑖𝑛
(𝑗+2,5),(𝑗,6),𝑚. 

Table 2 lists the Roman numerals and the corresponding 

values of minimal time-lags that depend on the machines.  

Table 2. The weight values of the arcs between operations 

𝝉(𝒋,𝟏),(𝒋,𝟐),𝒎 {𝑴𝟏: 𝟐𝟔. 𝟗𝟐, 𝑴𝟑: 𝟖𝟗. 𝟏} 

𝝉(𝒋,𝟐),(𝒋,𝟑),𝒎 {𝑴𝟓: 𝟔𝟔. 𝟗𝟖} 

𝝉(𝒋,𝟑),(𝒋,𝟒),𝒎 {𝑴𝟕: 𝟐𝟎. 𝟐𝟏} 

𝝉(𝒋,𝟒),(𝒋,𝟓),𝒎 {𝑴𝟏: 𝟐𝟔. 𝟗𝟐, 𝑴𝟑: 𝟖𝟗. 𝟏} 

𝝉(𝒋,𝟓),(𝒋,𝟔),𝒎 {𝑴𝟐: 𝟐𝟏. 𝟖𝟐, 𝑴𝟒: 𝟏𝟖. 𝟏} 

𝝉(𝒋,𝟔),(𝒋,𝟕),𝒎 {𝑴𝟏: 𝟏𝟑. 𝟓𝟏} 

𝝉(𝒋,𝟓),(𝒋+𝟏,𝟏),𝒎 {𝑴𝟐: 𝟐𝟏. 𝟖𝟐, 𝑴𝟒: 𝟏𝟖. 𝟏} 

𝝉(𝒋,𝟕),(𝒋+𝟏,𝟔),𝒎 {𝑴𝟔: 𝟖. 𝟕𝟏} 

𝝉(𝒋+𝟐,𝟓),(𝒋,𝟔),𝒎 {𝑴𝟐: 𝟐𝟏. 𝟖𝟑, 𝑴𝟒: 𝟐𝟎. 𝟏} 

 

A part of the non-oriented disjunctive graph illustrating this 

example is given in Figure 3. In this graph, an arc (in full line) 

between two successive operations (Oj,o, Oj,o+1) represents the 

precedence (routing) constraint of the Job j. It is not weighted 

by any distance between these operations as no machines are 

assigned yet. Each pair of disjunctive arcs is represented with a 

dotted edge and represents the constraint between two 

operations sharing the same possible machine resource. 

 

O3,1 O3,2 O3,3 O3,4 

O2,1 O2,2 O2,3 O2,4 

O1,1 O1,2 O1,3 O1,4 

 

Figure 3. Illustration of a part of a problem with 6 jobs and 

7 machines represented with disjunctive graph 

 

A solution is an oriented conjunctive-disjunctive graph that 

includes arcs only. As the FJSP is an assignment and a 

scheduling problem, first, a machine assignment is done as 

shown in Figure 4. Such an assignment is represented by a 



vector MA (Machine Assignment). Each element of MA is the 

number of the machine assigned to a given operation. Therefore, 

a possible representation of the assignment shown in Figure 4 

would be in this way: {1 5 7 1 4 1 6 1 5 7 1 4 1 6 1 5 7 1 4 1 6 1 

5 7 1 4 1 6 1 5 7 1 4 1 6 1 5 7 1 4 1 6}. This vector means that 

the first operation of Job 1 is processed on Machine M1; the 

second operation of Job 1 is processed by machine M5; the third 

operation of Job 1 is proceeded by machine M7, and so on for all 

the jobs.  

 

O3,1 

M1

O3,2 

M5

O3,3 

M7

O3,4 

M1

O2,1 

M1

O2,2 

M5
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M7

O2,4 

M1

O1,1 

M1

O1,2 

M5

O1,3 

M7

O1,4 

M1

26.92
 

Figure 4. Illustration of a part of the 6 jobs and 7 machines 

problem with a disjunctive graph with the assignment of 

only one machine to each operation 

 

Figure 4 shows a part of the new non-oriented disjunctive graph 

after machine assignments. The relevant edges to this 

assignment are still present, and the disjunctive edges that are 

not relevant have been removed since they are not involved in 

the schedule. Thus, O1,1 and O1,4 should be scheduled on the 

same machine M1, so there is still an edge linking these 

operations. 

When no time-lags are specified (for example between one 

operation and the dummy operation O of the graph), it is 

possible to assume, without loss of generality, to have null 

minimal time-lags and infinite maximal time-lags. The negative 

arcs representing infinite maximal time-lags are ignored in 

graph representation in the remainder of this article, since there 

is no interest in considering infinite maximal time-lags. The arc 

between successive operations of one job includes the 

processing time and minimum time-lags constraints as 

illustrates the Figure 4. The duration of this arc is equal to the 

processing time plus the minimal time-lags duration. Minimal 

time-lags are also included in disjunctive arcs: these arcs are 

weighted with the processing time of the operation at the 

beginning of the arc plus the minimum time-lag. 

Finally, the acyclic conjunctive-disjunctive graph of a solution 

is given in Figure 5. In this graph, Arcs in bold constituted the 

critical path, and underlined numbers represent the earliest 

starting times of operations; all pairs of disjunctive edges are 

reduced to one arc and represent the sequence of operations 

processed on the same machine.  

These disjunctive edges (arcs between operations of the same or 

different jobs which use the same machines) define the 

operations sequence on machines. The graph of Figure 5 is a 

solution in which: 

- on machine M1 the sequence is: O1,1, O4,1; O1,4, O2,1; 

O4,4, O5,1; O2,4, O3,1; O5,4, O6,1; O3,4, O1,6; O6,4, O2,6; O4,6, 

O5,6; O3,6, O6,6; 

- no operations scheduled on machine M2; 

- no operations scheduled on machine M3; 

- on machine M4 the sequence is: O1,5, O4,5; O2,5, O5,5; 

O3,5, O6,5; 

- on machine M5 the sequence is: O1,2, O4,2; O2,2, O5,2; 

O3,2, O6,2; 

- on machine M6 the sequence is: O1,7, O4,7; O2,7, O5,7; 

O3,7, O6,7; 

- on machine M7 the sequence is: O1,3, O4,3; O2,3, O5,3; 

O3,3, O6,3. 
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Figure 5. A schedule of the FJSP. Bold-face arcs show a critical path whose length, i.e.: the makespan, is 627.41 

Since each operation belongs to one job only, a common 

representation of a solution consists in giving the job sequence 

on machines. With such notation, the previous solution is noted: 

Machine 1: job 1, job 4, job 1…; Machine 4: job 1, job 4…, etc. 

However, [Bierwirth, 1995] introduces an alternative 

representation as a sequence of job numbers. Based on his 

proposal, the solution of Figure 5 is encoded to: {1 4 1 1 1 4 1 2 

4 4 4 2 5 2 2 5 2 3 5 5 5 6 3 3 6 3 3 1 1 6 6 6 2 2 4 4 5 3 5 3 6 

6}. A representation that is known by: sequence with repetition. 

Such sequence is represented by a vector OS (Operation 



Selection), read from left to right. In this vector, the first “1” 

corresponds to the first operation of Job 1; the second value “4,” 

refers to the first operation of Job 4; the third value is the second 

operation of Job 1, followed by the third operation of this Job 1, 

and so on. A greedy algorithm or a metaheuristic can manage 

this sequence effectively because it makes it possible to create 

an acyclic-oriented disjunctive graph. Please note that the same 

oriented disjunctive graph can be represented by several such 

sequences. In the Figure 6, a part of these data structures are 

represented. 

Operation Selection

 (OS)

Machine Assignment

 (MA)

 

𝑂1,1 𝑂4,1 𝑂1,2 𝑂1,3 𝑂1,4 𝑂4,2 𝑂1,5 𝑂2,1 𝑂4,3 𝑂4,4 𝑂4,5 𝑂2,2 𝑂5,1 𝑂2,3 𝑂2,4 𝑂5,2 𝑂2,5 𝑂3,1 𝑂5,3 𝑂5,4 𝑂5,5 

1 4 1 1 1 4 1 2 4 4 4 2 5 2 2 5 2 3 5 5 5 

 

𝑀1 𝑀1 𝑀5 𝑀7 𝑀1 𝑀5 𝑀4 𝑀1 𝑀7 𝑀1 𝑀4 𝑀5 𝑀1 𝑀7 𝑀1 𝑀5 𝑀4 𝑀1 𝑀7 𝑀1 𝑀4 

1 1 5 7 1 5 4 1 7 1 4 5 1 7 1 5 4 1 7 1 4  

Figure 6. Coding of a solution 

After presenting the disjunctive graph and solutions coding, the 

metaheuristic explained in the next section allows solution 

space exploration. 

5.2 Greedy Randomized Adaptive Search Procedure (GRASP) 

The GRASP metaheuristic explores the solution space. This 

metaheuristic was proposed by [Feo et Resende, 1995], and it’s 

a multi-start metaheuristic. It consists of the generation of a 

solution using a randomized construction heuristic; then, this 

solution is improved using a local search. A classical GRASP is 

proposed (Algorithm 1). f(s) refers to the objective function 

optimized in the process as the makespan Cmax. 

 

Algorithm 1: GRASP. 
Output 

S* : Best found solution; 

Variables 

S : A temporary solution; 

BEGIN 

1.   WHILE stop criteria not met DO 

2.     S := Construction_Phase; 

3.     S := Local_Search_Phase; 

4.     S*:= Best solution found; 

5.   End WHILE 

6.   Return S*; 

END 

5.2.1 Construction phase 

This phase aims to build an initial solution by assigning and 

scheduling one operation at a time, using a greedy randomized 

heuristic. As described by [Binato et al., 2000] for the JSP, at 

each iteration, a Restricted Candidate List (RCL) is built from 

the set containing the operations already scheduled. An 

operation is selected from this set and added to the RCL under 

the criteria of “which of the already scheduled operations 

represent the smallest increase in the makespan”. Let’s consider 

𝑂𝑗,𝑜 the oth operation of the job j and 𝑂𝑗,𝑜 is processed on the 

machine 𝑀𝑗,𝑜,𝑚 from the set 𝑀𝑗,𝑜 of the available machines for 

𝑂𝑗,𝑜 . The set of scheduled operations is noted Os, while 

candidate operations to be scheduled is noted Oc. The candidate 

list Oc of operations to be processed is built at each iteration 

from a list L of operations that are not scheduled yet. The next 

operation to be scheduled is chosen randomly from RCL, all the 

operations have equal probabilities to be chosen. The algorithm 

used to generate an initial solution is almost similar to the 

construction phase algorithm proposed by [Kemmoé-Tchomté 

et al., 2017]. Still, the difference is that we consider the time-

lags and switching time constraints. 

5.2.2 Evaluation phase: Longest path 

The evaluation algorithm computes the earliest start time of 

each operation, then the end date of the last operation in the 

schedule. It's used in the local search phase to evaluate a 

possible solution after the initial solution perturbation. 

Algorithm 2 presents the evaluation of the longest path for the 

problem described above. 

 

Algorithm 2: Evaluation. 
Input 

Data : Problem information; 

B  : Bierwirth vector;  

BM  : Affectation vector; 

Output 

Cmax  : Makespan; 

PERE : Operations predecessor 

that conditions their 

start date; 

OperationsMachine : The operations machine 

affectation;   

Variables 

EarliestStart : Operations earliest start 

date; 

PERE  : Operations predecessor 

that conditions their 

start date; 

OperationsMachine  : The operations machine 

affectation; 

MachineOperation : The latest operation on a 

machine;  

(j,o),(k,l) : job number, operation 

number 

etapeJob : Operation to be scheduled 

for each job 

machine,m : The machine assigned to 

the current operation 

d,dPD : End date of conjonctif 

and disjonctif 

predecessor respectively; 

pere, Dpere  : Conjonctif and 

disjonctive predecessor;   

BEGIN 

1. Initialization of all variables; 

2. FOR i:=0 TO the total number of operation 

DO 

3. d = 0, dPD = 0; 

4. pere=(-1,-1), Dpere=(-1,-1); 

5. j = B[i], o = etapeJob[j]; 

6. machine = BM[i]; 

7. For all (k,l)conjonctifs 

Predecessors of (j,o) DO 

8. m = OperationsMachine[j,o]; 

9. IF d < (EarliestStart[k,l]+ 

 ProcessingTime[k,l,m] + 

TimeLags[k,l,j,o,m]) DO 

10. d = (EarliestStart[k,l]+ 

ProcessingTime[k,l,m] + 

TimeLags[k,l,j,o,m]; 

11. pere = (k,l); 

12. END IF 

13. END FOR 

14. IF (j,o) got a disjunctive 

predecessor DO 

15. (k,l)=MachineOperation[machine]; 

16. Dpere = (k,l); 

17. dPD =(EarliestStart[k,l]+ 

ProcessingTime[k,l,m] + 

SwitchingTime[k,l,j,o,m]; 

18. END IF 

19. IF dPD > d DO 

20. pere = Dpere; 

21. d = dPD; 

22. END IF 



23. EarliestStart[j,o] = d; 

24. PERE[j,o] = pere; 

25. MachineOperation[machine]=(j,o); 

26. END FOR 

27. Compute Cmax; //The end date of the last 

operation. 

28. RETURN Cmax,PERE,OperationsMachine, 

EarliestStart; 

END 

5.2.3 Local search phase 

After generating the initial solution, a local search is applied to 

improve the quality of the solutions. It’s based on the critical 

path, where we exchange the order of two consecutive 

operations processed by the same machine and/or change the 

machine allocation of an operation in the critical path. The 

algorithm 4 (Local_Search_Dis) explores the critical path from 

the sink node * to the source node O. The possible permutations 

that could improve the solution are saved, if the evaluation of 

the new solution (the permutation is applied) indicates an 

improvement of the solution, this new solution is the best 

solution and so on. The evaluation of FJSP relies on a longest 

path computation (Algorithm 2).  

 

Algorithm 3: Local_Search. 
Input/Output 

Data : Problem information; 

S : Initial solution; 

Variables 

(j,o) : operation on the critical 

path; 

S1,S2 : temporary solutions; 

BEGIN 

1. Local_Search_Dis(S,Data); 

2. (j,o)= The last operation of 

the critical path; 

3. WHILE (j,o)!=(0,0) DO 

4. IF (Number of available machines for 

(j,o)>1) DO 

5. S1 = S; 

6. FOR EACH machine different 

 Than the current one DO  

7. Change the machine 

affected to op in S1; 

8. Local_Search_Dis(S1,Data); 

9. IF f(S1)<f(S) DO 

10. S = S1; 

11. (j,o) = The last operation of 
the critical path of S; 

12. ELSE  

13. (j,o)= The predecessor of 

(j,o)on the critical path of S; 

14. END IF 

15. END FOR 

16. ELSE 

17. (j,o) = The predecessor of (j,o)on 

the critical path of S; 

18. END IF 

19. END WHILE 

 END 

 

For this described GRASP metaheuristic, 500 is the iteration 

number chosen to obtain a solution. The choice of this number 

comes from obtaining good solutions in terms of quality and 

computation time, starting from 300 or 500 iterations, 

depending on the instance.  

Algorithm 4: Local_Search_Dis. 
Input/Output 

S : initial solution; 

Data : Problem information; 

Variables 

(j,o),(k,l) : operation and predecessor on 

critical path; 

S_temp : temporary solution; 

m : machine assigned to the 

operation (j,o) in the critical 

path; 

BEGIN 

1. Cmax = f(S); 

2. (j,o)= The last operation of the critical 
path; 

3. S_temp = S; 

4. WHILE (j,o)!=(0,0) DO 

5. m = Machine assigned to (j,o); 

6. IF (Number of critical path operations 

processed by m >1) Do 

7. (k,l)= disjunctive predecessor of 

(j,o); 

8. Apply permutation of (j,o) and (k,l) 

in S_temp; 

9. Evaluation of S_temp; 

10. IF f(S_temp)<f(S) DO 

11. S = S_temp; 

12. (j,o)= The last operation of the 
critical path; 

13. END IF 

14. ELSE 

15. (j,o) = predecessor of (j,o) on the 

critical path; 

16. END IF 

17. END WHILE 

END 

 

6 RESULTS AND ANALYSIS 

In this section, we present a comparison between the results 

obtained by the Mixed Integer Linear Programming (MILP) 

[Aallaoui et al., 2022] and the GRASP metaheuristic described 

in the previous section based in the instances described in Table 

3. The number of iterations chosen for the GRASP is 500. 
 

Table 3. Generated instances description 

Instance (Ins) 1 2 3 4 5 6 

Jobs  6 12 12 18 24 24 

Operations / job 7 7 14 7 7 7 

Machines 7 7 10 7 7 10 

 

The instances used to test the models are instances generated 

from the real problem. Table 3 below presents 6 instances used 

to compare the MILP and the GRASP in terms of the quality of 

the solution and the computation time (CPU). 

The resolution of the MILP was done with CPLEX 20.1 with a 

time limit of one hour, and GRASP metaheuristic was coded on 

Python. The execution of both models was on a machine with a 

processor i7 ~ 2.8 GHz and 16 Go of Ram. 

Table 4 presents the results and the gap between the makespan 

obtained with MILP and the makespan obtained with GRASP 

calculated based on equation (5): 

𝑔𝑎𝑝(%) = (
𝐶𝑚𝑎𝑥𝐺𝑅𝐴𝑆𝑃

𝐶𝑚𝑎𝑥𝑀𝐼𝐿𝑃

− 1) ∗ 100%       (5) 

 

 

 



Table 4. Results 

 
 

The results show that the GRASP can reach optimal solutions in 

a low CPU time but only for some instances. In addition, the 

solutions obtained with CPLEX (MILP) within the 1-hour limit 

of execution are outperformed by the solutions obtained by the 

GRASP in terms of quality and computation time. However, for 

the instances that CPLEX found an optimal solution, the 

GRASP needed more iterations (more time) to explore the 

solution space. 

7 CONCLUSION 

In this study, a metaheuristic is proposed to tackle the Flexible 

Job Shop Problem with generic time-lags. It’s a GRASP 

metaheuristic relying on a construction heuristic to generate a 

solution to minimize the makespan and a local search phase to 

improve this solution. The results show that the proposed 

metaheuristic provides valuable results for some instances and 

good results for other instances in terms of solution quality.  

To enhance the results, several techniques can be studied to be 

applied to our case, such as improving the GRASP 

metaheuristic by adding a multi-level evolutionary local search 

with an estimation procedure. This technique will make the 

local search phase fast and will allow the solution space 

exploration rather fast. 

Hence, in future studies, we will develop a multi start GRASP 

with a multi-level evolutionary local search metaheuristic to 

improve the results and test it using the FJSP classical instances. 
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Cmax CPU Time Cmax CPU Time

1 627.41 12.17 627.41 0.07 0

2 1205.56 172.3 1208.8 0.7 0.26875477

3 4467 3600 2540.7 3.8 -43.12290128

4 1782.19 1784.8 1897 1.32 6.442074077

5 2404.76 3600 2373.6 1.6 -1.295763403

6 4439.05 3600 2355.6 3.18 -46.93459186
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