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Résumé - Cette étude développe des solutions pour optimiser le repositionnement des conteneurs vides dans
l′arrière-pays. Les conteneurs arrivent au fil du temps chez le destinataire (importateur), tandis que la demande
de conteneurs provient de l’expéditeur (exportateur). Un conteneur vide peut être loué par l’expéditeur auprès du
destinataire pour envoyer sa cargaison au terminal maritime. Nous modélisons le système comme une file d’attente
à deux extrémités avec un temps d’appariement non nul et un nombre limité de ressources. Le destinataire cherche
à minimiser la somme des coûts de stockage et de déplacement en décidant quels conteneurs doivent etre conservés
pour une location future et lesquels doivent etre immédiatement renvoyés au terminal maritime. Par le biais d’un
processus de décision de Markov, nous prouvons qu’avec un seul camion, la politique optimale est une politique à
seuil dépendant de l′état où les seuils d’admission augmentent avec la quantité stockée chez l′expéditeur et la de-
mande de l′expéditeur, et diminuent avec la distance entre le destinataire et l′expéditeur. L′intensité du trafic joue
un rôle de la même ampleur que le ratio d′importation/exportation pour les décisions de retenue. En particulier,
la réduction relative des coûts obtenue par la politique de retenue est la plus grande dans les zones à faible trafic,
révélant qu’un stock dans l′arrière-pays compense la rareté des conteneurs.

Abstract - This study develops solutions to optimize empty container repositioning in the hinterland. Self-owned
containers arrive over time at the (importer) consignee, while the demand for containers arises from the (exporter)
shipper. An empty container can be rented by the shipper from the consignee to send its load to the sea terminal.
We model the system as a double-ended queue with non-zero matching time and limited number of resources. The
consignee aims to minimize the sum of holding and travel costs by deciding which containers should be stored for
future rent and which should be immediately returned to the sea terminal. Through a Markov decision process,
we prove that with a single truck, the optimal policy is a state-dependent withholding threshold policy where the
admission thresholds increase with the quantity stored at the shipper and demand by the shipper, and decrease
with the distance between consignee and shipper. Traffic intensity plays a role of the same magnitude as the im-
port/export ratio for withholding decisions. Specifically, the relative cost reduction obtained by the withholding
policy is greatest in low-traffic areas, revealing that an inventory in the hinterland compensates for the scarcity of
containers.

Mots clés - Conteneur, file d′attente à double extrémité, stock, Processus de décision Markovien, tournée de rue.

Keywords - Container, double-ended queue, inventory, Markov decision process, street turn.

1 INTRODUCTION

Containerization is a standardized system of freight trans-
port that moves containers from door to door. This includes
container ships, deep sea terminals with special handling
equipment, and intermodal infrastructure in the hinterland
such as inland terminals. The United Nations Conference
on Trade and Development stated that in 2017 around 80%
of global trade by volume or 70% by value was carried by

sea and handled by ports (UNCTD, 2018). In line with
the growth in intercontinental maritime transport, hinter-
land container traffic has grown substantially. In particular,
transportation modes such as barges, trains, and trucks have
been adapted to transport containers to and from deep sea
terminals.

Once a container has been unloaded at its destination in
the hinterland, another transport leg must be found, as mov-
ing an empty container is almost as costly as moving a full



container. Moreover, whether or not it is loaded, a container
takes up the same amount of space and thus requires the
same transport capacity (Notteboom and Rodrigue, 2021).
In an ideal situation, an inbound container should find an
outbound load once it has been unloaded before being sent
back to the sea terminal. The strategy of matching an empty
container from an importer with a load from an exporter, so
that the container is full in both directions, is called a street
turn strategy. In practice, however, containers are often im-
mediately sent back empty from the hinterland to the sea
terminal, leading to additional transportation costs and pol-
lution. An important reason for these empty movements is
the imbalance between imports and exports. However, other
factors incentivize the immediate return of empty contain-
ers to the sea terminal. In particular, distance and a lack
of coordination between importers and exporters in the hin-
terland may discourage operating matches between empty
containers and outbound loads. More importantly, the high
detention costs imposed by shipping lines create an urgency
to send back empty containers instead of storing them until
a match can be found.

Using data from 2017, Legros et al. (2019) revealed
that the cost savings obtained by a street turn strategy were
limited, although a high proportion of containers could be
reused. Recently, the motivation to implement a street turn
policy has declined even further. With the rapid increase in
global container shipments from late 2020 through 2022, a
global shortage of containers has been reported (e.g., Bhat-
tarai, 2021). As a result, ocean carriers have increased their
demurrage and detention fees and have limited free deten-
tion periods (Angell, 2021). Specifically, xChange (2022)
reported that the global average of demurrage and deten-
tion charges increased from $586 in 2020 to $664 in 2022,
corresponding to an increase of 12%. Detention costs vary
significantly from one region to another; they were around
$2,500 at day 14 in Los Angeles in 2022 for a standard
40ft, while they are around only $120 in Busan. In areas
where detention costs are highest like New York or Los An-
geles, we observe that they reach the same cost as buying a
container that can be reused several times, which is around
$3,900 for a standard 40ft. These conditions almost entirely
preclude the implementation of a street turn policy.

Conversely, legal restrictions on carbon emission and
recent increases in fuel prices amplify the need to reduce
empty container movement by reusing them for export op-
erations. Avoiding detention fees and reducing travel costs
are thus contradictory drivers. In the current situation, the
high detention fees are preponderant in decision making,
which means that most containers are immediately returned
to the sea terminal. A simple way to avoid detention fees,
obtain access to and control over containers, and implement
a street turn strategy is to use Self-Owned Containers (SOC)
instead of Carrier-Owned Containers (COC). In the current
context, SOC management is becoming an increasingly im-
portant issue for many companies (Shores, 2021). With
SOCs, an importer can decide to rent its own containers to
an exporter to avoid empty trips from the hinterland to the
sea terminal, thus implementing the street turn strategy. Al-
though SOCs allow importers to make decisions more inde-
pendently, they require careful management because some

SOCs should be stored for future rentals at the importer’s
location, while some should immediately be returned to the
sea terminal when the imbalance between imports and ex-
ports is high or when finding a match will take too long.

In the present study, we examine the optimization of
container storage decisions by an importer in the hinterland
while including strategic decisions by shippers to have ex-
port goods available ahead of a container becoming avail-
able. We aim to reveal the high potential of street turn
strategies with SOCs when compared to the widely imple-
mented immediate return policy. To this end, we develop a
queueing model that can be used for empty container repo-
sitioning management by an importer – the consignee – to
avoid unnecessary movements and hence improve overall
utilization of scarce (empty) containers in the hinterland.
Specifically, we model the system as a double-ended queue
with a non-zero matching time and finite amount of re-
sources to identify and carry out matches. The objective for
the consignee is to determine how many containers should
be stored to minimize its operational costs, including hold-
ing and travel costs. The exporter – the shipper – stores its
goods with the expectation of a future match with an empty
container from the consignee; when empty containers are
scarce, it might make sense to capture any available empty
container for export use. Thanks to advanced communica-
tion technologies, the shipper shares real-time information
on the state of its available inventory for export. This allows
the consignee to adjust its container withholding policy to
the state of the shipper’s available inventory.

We formulate the problem as a Markov decision process
and prove in the single-truck case that the optimal inventory
policy at the consignee is a state-dependent threshold pol-
icy with the optimal withholding threshold increasing with
the inventory level at the shipper. This result is a novel
contribution to the admission control literature, as doubled-
ended queues with non-zero matching time have not been
analyzed for this problem.

2 LITERATURE REVIEW

Empty container management received substantial atten-
tion from the transport and maritime economics communi-
ties. However, the transport and maritime economics litera-
ture does not take the inventory perspective into account,
so their research paradigms cannot be used to tackle the
problem considered in this paper. We refer to Dejax and
Crainic (1987) for a review of early research from the oper-
ations management and transportation science communities
on containerization and to Braekers et al. (2011), Lee and
Meng (2014), and Lee and Song (2017) for recent surveys.
Lee and Song (2017) divided existing contributions into
two categories. The first investigates network flow mod-
els for the empty container repositioning issue (Li et al.,
2007; Song and Dong, 2008; Dang et al., 2012, 2013; Hjort-
naes et al., 2017). The second, more closely related to ours,
considers the empty container repositioning problem from
an inventory theory perspective. In these studies, the fo-
cus is generally on empty container movements between the
sea terminal and consignee, but not with a street turn strat-
egy involving an importer, exporter, and sea terminal as in
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this paper. We also note Li et al. (2004), Song and Zhang
(2010), and Zhang et al. (2014), who considered a single
empty depot located in a port and controlled by a shipping
line, while Song (2005, 2007), Lam et al. (2007), Shi and
Xu (2011), Ng et al. (2012), and Xie et al. (2017) focused
on empty container (or equivalent vehicle) management for
a two-depot system. As in this paper, Lam et al. (2007) and
Shi and Xu (2011) employed Markov decision process ap-
proaches to determine optimal policies for inventory man-
agement but used different model assumptions than ours.

We model the consignee–shipper interaction as a
double-ended queue in which the arrivals of customers and
servers are independent processes. This definition enables
considering the double-ended queue model for a wide range
of applications such as shared-mobility systems (Xu et al.,
2020; He et al., 2021), disaster and repair management
(Di Crescenzo et al., 2012), passenger and taxi queues (Shi
and Lian, 2016) and the allocation of live organs (Elalouf
et al., 2018). Some studies focus on customer joining
behavior (Shi and Lian, 2016; Wang et al., 2017; Jiang
et al., 2021), performance evaluation (Conolly et al., 2002;
Afèche et al., 2014; Diamant and Baron, 2019), and con-
gestion control policies (Gurvich and Ward, 2015; Liu and
Weerasinghe, 2021). However, matching times are assumed
to be zero in the aforementioned papers; indeed, to the best
of our knowledge, most previous studies do not consider
matching time, as we do in this paper. We do note that Kim
et al. (2010) developed a simulation procedure to derive per-
formance measures. Also using a non-zero matching time,
Shi et al. (2015) employed a matrix-analytic method to de-
termine stability conditions and derive steady state proba-
bilities. We focus instead on optimization issues and pro-
vide performance measures in closed form in certain partic-
ular cases. Next, Wang et al. (2023) analyzed a particular
double-ended queue with a two-mass point distribution for
the matching time. Finally, Nguyen and Phung-Duc (2022)
studied customers’ strategic joining decisions in a double-
ended queue with a non-zero matching time for a passenger-
taxi system, and extended their model to a situation with
two types of customers in Nguyen and Phung-Duc (2023).

3 FORMULATION OF THE PROBLEM

We analyze the management of SOCs by a consignee in
the hinterland. A consignee imports products via contain-
ers from a sea terminal. Later, empty containers are sent
back to the sea terminal to be reloaded for a new import
operation. To reduce road transportation costs, consignees
can rent their containers to shippers in need of sending their
products to the sea terminal. The policy of reusing contain-
ers for the return trip to the sea terminal is referred to as a
street turn strategy, as opposed to an immediate return pol-
icy, in which all containers are sent back empty to the sea
terminal. For simplicity of modeling, we assume that we
have a single shipper.

Due to rental fees, a street turn strategy may reduce
transportation costs. Assume that the transportation cost on
roads is t monetary units per kilometer, which is either paid
to a transport company or through direct costs if the trucks
are owned by the consignee, and that the shipper may be

charged a renting fee of r per time unit of container use. If
the distance between the sea terminal and the consignee’s
location is d1, the distance (out and back) that must be cov-
ered to deliver a container from the consignee to the shipper
is d2, and the distance between the shipper and the sea ter-
minal is d3, then a necessary condition on average costs to
consider a street turn strategy is

td1 > td2 − rd3/v, (1)

where v is the average driving speed in kilometers per time
unit. It should be noted that the rental fee r is only applied
on d3, indicating that the consignee is in charge of trans-
porting the empty container to the shipper’s location and
that the shipper only pays for the time it uses the container.
Condition 1 is however only a necessary condition to imple-
ment a street turn strategy that is valid for a given container
when reuse is possible. Considering the imbalance between
imports and exports, a full reuse of containers may not be
feasible, so it may be necessary to determine which contain-
ers should be immediately returned to the sea terminal and
which should be kept at the consignee’s location for future
reuse. The function that associates the decision to store or
return a container with each state of the system is called a
withholding policy.

For simplicity, we assume that the containers’ arrival
process at the consignee is Poisson with constant parame-
ter λc. The Poisson assumption is justified for the arrival
processes at sea terminals. Some statistical analyses have
revealed that vessel arrivals fit well with a Poisson distri-
bution (Plumlee, 1966; Kozan, 1997). In addition, truck
arrivals at the sea terminal can be modeled by Poisson dis-
tributions (Minh and Van Noi, 2021; Roy et al., 2022). We
make the further assumption that the arrival rate is constant
over time. This may not be realistic because in some areas
there is a pronounced variation by time of day and day of the
week, due to the activity at the sea terminal. If time depen-
dency varies slowly relative to the system dynamics, then
such systems have been typically analyzed using a point-
wise stationary approximation, where the performance at a
given time is approximated by the steady-state performance
of the stationary system with a constant arrival rate. The
latter is given by the mean arrival rate in a given inter-
val around the observation point (Green and Kolesar, 1991;
Jennings et al., 1996).

The non-focal shipper needs to send its loads to the ship-
ping line. It either asks the shipping line to send an empty
container or rents an empty container from the consignee.
The need for empty containers at the shipper follows a Pois-
son process with rate λs. We assume that it is cheaper for
the shipper to rent a container from the consignee than to
request a container from the shipping line and pay the re-
sulting high detention fees. The time to send a container
from the consignee’s location to the shipper is non-zero be-
cause it includes the time for the consignee and shipper to
make an agreement, the time to find an available truck, and
the transportation time between the consignee and shipper.
To account for the variability of these durations, we assume
that the total time to send a container from the consignee’s
location to the shipper, known as the matching time, is ex-
ponentially distributed with rate µ. The high variability of
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the exponential distribution is also one way to model the
diversity of shippers’ locations, allowing us to consider the
model in the present study as an approximation of the multi-
shipper problem. We further assume that there are m trucks
devoted to the matches, which creates a bound on the num-
ber of simultaneous matches that can be carried out.

Furthermore, the shipper stores part of its stockpile for
future matches. Specifically, the shipper maintains an in-
ventory level equivalent to q container volumes. If q = 0,
the shipper declines to reuse containers from the consignee.
If q > 0, then a quantity of q equivalent containers is stored
at the shipper’s location, either through matching processes
or waiting for a match to occur. This policy is simple to
implement by the shipper and allows a control of the time
spent by the goods in the hinterland.

The objective for the consignee is to determine the opti-
mal withholding policy that minimizes the operational cost
per time unit of a street turn strategy, denoted by C. We
denote by λr the expected rate of containers that are im-
mediately returned to the sea terminal; therefore, the aver-
age total travel cost of the street turn strategy T is T :=
λctd1 + (λc − λr)(td2 − rd3/v). In addition to the travel
cost, a street turn policy induces the storage of empty con-
tainers at the consignee’s location, which results in an ex-
pected holding cost H, expressed as H := hNI , where h is
the holding cost per time unit and per container, and NI is
the expected number of containers at the consignee’s loca-
tion. The operational cost per time unit is then defined as

C := λrtd1 +(λc −λr)(td2 − rd3/v)+hNI . (2)

Note that with a sufficiently high rental fee, the cost can
become negative, indicating that the street turn policy can
generate revenue for the consignee.

We are also interested in the consequences of the street
turn strategy on the use of containers, as measured by the
matching proportion and occupation rate of containers. The
matching proportion, Pm, is the ratio between the number
of matches per time unit divided by λs; that is, Pm := λc−λr

λs
.

This means that the matching proportion represents the pro-
portion of the goods sent by the shipper to the sea termi-
nal using a container from the consignee. The occupation
rate of containers, also called utilization rate and desig-
nated as U , is measured by the proportion of time during
which a container delivered at the consignee is full, assum-
ing that containers sent back empty to the sea terminal are
full d1

2d1
= 50% of the time, while containers that are used

for matches are full d1+d3
d1+d2+d3

of the time. Therefore, we

define the occupation rate as U :=
0.5λr+(λc−λr)

d1+d3
d1+d2+d3

λc
. A

summary of the notations is given in Figure 1.

4 WITHHOLDING POLICY

We determine the optimal withholding policy. The con-
signee is informed by the shipper about the volume of goods
waiting for a match. Based on this information, the con-
signee decides to either immediately return an arriving con-
tainer to the sea terminal or to store it for a future match.

The function, which associates the decision to store or re-
turn with an arriving container at a given state of the sys-
tem, is called a dynamic withholding policy. We employ
a Markov decision process approach to prove that the opti-
mal policy is a state-dependent threshold policy, where the
admission threshold depends on the system state at the ship-
per.

We define the system state by (x,y), where x is the num-
ber of containers present in the system, either at the con-
signee’s location or carrying out a match, and y is the vol-
ume of production stored by the shipper in equivalent con-
tainer volume (either carrying out a match or waiting for a
future match), with x ∈N0 and y = 0,1, · · · ,q. Note that we
do not need to distinguish between containers that are wait-
ing at the consignee’s location and containers that are car-
rying out a match. Since we cannot simultaneously have a
container waiting at the consignee, a container waiting for a
match at the shipper, and an available truck, we deduce that
the number of trucks traveling from the consignee to the
shipper is min(x,y,m), so the number of containers that are
waiting at the consignee’s location is x−min(x,y,m), and
the number of equivalent container volume that are waiting
for a future match at the shipper is y−min(x,y,m).

The transition rate from state (x,y) to state (x′,y′) is de-
noted by r(x,y),(x′,y′) for x ∈ N0 and y = 0,1, · · · ,q. It is λc
if x ∈ N0 and y = 0,1, · · · ,q, with (x′,y′) = (x+1,y) if ac-
tion store is selected. It is λc if x ∈ N0 and y = 0,1, · · · ,q,
with (x′,y′) = (x,y), if action return is selected. It is λs if
x ∈ N0 and y = 0,1, · · · ,q− 1, with (x′,y′) = (x,y+ 1). It
is min(x,y,m)µ if x ∈ N1 and y = 1,2, · · · ,q, with (x′,y′) =
(x−1,y−1). Finally, it is 0 otherwise.

If return is selected, a transportation cost of td1 is in-
curred, while if store is selected, the transportation cost is
td2−rd3/v. The number of containers that are waiting for a
future match at the consignee’s location is x−min(x,y,m),
so the holding cost in state (x,y) is h(x−min(x,y,m)).

The total event rate λs+λc+mµ is bounded. Therefore,
we use the uniformization technique (Puterman, 1994) be-
cause it enables us to consider the continuous time Markov
chain as a discrete time one, assuming that λs+λc+mµ= 1.
By adding a fictitious transition from a state to itself, we
define the system’s value function, Vk(x,y), over k steps by
V0(x,y) = 0, and for k ≥ 0

Vk+1(x,y) = h(x−min(x,y,m))+λc min(Vk(x+1,y) (3)
+ td2 − rd3/v,Vk(x,y)+ td1)+λsy<qVk(x,y+1)
+min(x,y,m)µVk(x−1,y−1)
+(1− (λc +λsy<q +min(x,y,m)µ))Vk(x,y),

with x ∈ N0, and y = 0,1, · · · ,q.
The minimizing operator at the first line of (3) repre-

sents the control action to either store or return a container.
We obtain the long-run average optimal actions by apply-
ing the value iteration technique through the recursive eval-
uation of Vk, using (3) for k ≥ 0. As k tends to infinity,
the optimal policy converges to the unique average optimal
policy that minimizes the consignee’s operational cost, and
the difference Vk+1(x,y)−Vk(x,y) converges to the long-run
optimal cost (Puterman, 1994).

In Theorem 1, we prove the threshold form of the op-
timal policy for m = 1. We observe numerically that the
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Figure 1: Notations

same result holds when m > 1. The idea is to prove that
the threshold structure of the optimal policy is kept in
the induction step from k to k + 1. In other words, we
prove that if it is optimal to return a container in state
(x,y), then the same action is optimal in state (x + 1,y).
At iteration k, a necessary condition for this is that if
Vk(x+ 1,y)+ td2 − rd3/v−Vk(x,y)− td1 ≥ 0, then Vk(x+
2,y)+ td2 − rd3/v−Vk(x+ 1,y)− td1 ≥ 0, or equivalently
Vk(x+2,y)+td2−rd3/v−Vk(x+1,y)−td1 ≥Vk(x+1,y)+
td2 − rd3/v−Vk(x,y)− td1, which can be rewritten as

Vk(x+2,y)+Vk(x,y)−2Vk(x+1,y)≥ 0.

Therefore, by showing that Vk(x,y) is convex in x for each
k, we prove that the optimal policy converges to the unique
average optimal policy, defined by the withholding thresh-
olds ny for y = 0,1, · · · ,q, such that an empty container is
admitted in the system in state (x,y) if and only if x < ny.
However, the convexity property in x of Vk(x,y) cannot be
proven in isolation but has to be proven with a set of other
properties. This set of properties C is defined for a given

function f as follows:

Increasing in x : f (x+1,y)≥ f (x,y), (4)
Decreasing in y : f (x,y+1)≤ f (x,y), (5)
Increasing in (x,y) : f (x+1,y+1)≥ f (x,y), (6)
Convex in x : f (x+2,y)+ f (x,y)≥ 2 f (x+1,y), (7)
Convex in y : f (x,y+2)+ f (x,y)≥ 2 f (x,y+1), (8)
Submodular in (x,y) : (9)
f (x,y+1)+ f (x+1,y)≥ f (x+1,y+1)+ f (x,y), (10)
f (x+2,y+1)+ f (x,y)− f (x+1,y) (11)

− f (x+1,y+1)≥ 0,
f (x+1,y+2)+ f (x,y)− f (x,y+1) (12)

− f (x+1,y+1)≥ 0.

From the submodularity property of Vk(x,y), we deduce
that the thresholds ny are increasing in y. Formally, hav-
ing ny increasing in y means that if an empty container is
accepted in the system in state (x,y), then it should also be
accepted in the system in state (x,y+ 1). This means that
if Vk(x + 1,y) + td2 − rd3/v ≤ Vk(x,y) + td1, then Vk(x +
1,y+ 1)+ td2 − rd3/v ≤ Vk(x,y+ 1)+ td1. This implica-
tion holds if Vk(x,y)−Vk(x+ 1,y)+ td1 − (td2 − rd3/v) ≤
Vk(x,y+1)−Vk(x+1,y+1)+ td1− (td2− rd3/v). This in-
equality is equivalent to the submodular property of Vk(x,y).

This result has an intuitive explanation. The state vari-
able y is the amount of goods in equivalent container units
at the shipper. If x ≥ y, then x−min(y,m) is the number
of stored containers that are waiting for a match at the con-
signee’s location. The holding cost associated with x− y is
decreasing in y, which tends to incentivize the decision to
admit a container when y is large. When x < y, then y may
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also include the goods that are waiting for a future match
at the shipper. Since a system with a larger inventory at the
shipper has more capacity to carry out matches, a large y is
again an incentive for the consignee to store containers.

Theorem 1 (Optimal withholding policy). In the single-
truck case (i.e., m = 1), the optimal dynamic withholding
policy for the consignee is a state-dependent threshold pol-
icy with parameters ny, for y = 0,1, · · · ,q, which are in-
creasing in y, such that an arriving container is admitted
into the system in state (x,y) if and only if x < ny. If x ≥ ny,
an arriving container is returned directly to the sea termi-
nal.

Theorem 1 can be proven by induction.For the sake of
brevity, we skip the proof. Of particular note in the result
of Theorem 1 is that the consignee exerts control over the
number of containers in the inventory and the number of
containers carrying out a match, not only on the number of
containers in inventory, as one might expect.

5 NUMERICAL EXPERIMENTS

We study in this section the effect of the traffic intensity on
the optimal policy and the system performance. The numer-
ical results are shown in Figure 2 for λc +λs = 40,80,160,
and 320 container equivalents per day in export-dominant,
balanced and import-dominant areas.

Traffic intensity influences the withholding policy and
cost savings almost as much as an imbalance between ex-
ports and imports. Specifically, the thresholds decrease with
traffic intensity. Storing containers is one way to avoid a
shortage when there is a demand from a shipper. When the
intensity of container arrivals is high, the time until a de-
mand can be fulfilled is brief even if there is an apparent
shortage, so the need to store containers to reduce the im-
pact of an immediate shortage is low, which explains why
thresholds decrease with the intensity of demand. Due to a
large number of containers entering the hinterland, costs in-
crease with the intensity of demand, which also shows that
the absolute savings are greatest in high-traffic areas. How-
ever, this is only true in absolute terms. The relative differ-
ence between the immediate return and optimal withholding
policies is the greatest in low-traffic areas, where storing
containers has the potential to compensate for long inter-
vals between arrivals. Moreover, the proportion of immedi-
ately returned containers and the proportion of matches are
both heavily impacted by the intensity of λc+λs. With high
traffic, even in export-dominant areas, the proportion of re-
turned containers is high. This is due to the decision to set
very low withholding thresholds, such that most matches
cannot be carried out. Increasing withholding thresholds
would increase holding costs without influencing the vol-
ume of immediately returned containers (which is con-
strained here by the shipper’s low inventory level).

6 CONCLUSIONS

We analyzed the management of SOCs by a consignee in
the hinterland with the aim of minimizing the sum of travel

and holding costs. To this end, we formulated the problem
as a Markov decision process for a double-ended queue with
a non-zero matching time and finite amount of resources,
where the consignee decides to either store a container for
future reuse by an exporter or return it immediately to the
sea terminal. We proved in the single-truck case that the
optimal withholding policy is a state-dependent threshold
policy with threshold levels increasing along with shipper
inventory. We showed that traffic intensity plays almost the
same role as the balance between imports and exports, re-
vealing that the role of inventory at the consignee’s location
is to compensate for the scarcity of containers in the hinter-
land.

As future research, the assumptions made can be modi-
fied by considering non-Poisson processes for the arrival of
and demand for containers or a non-exponential distribution
of matching times. Although changing distributions may
lead to different quantitative results, it is unlikely to modify
the insights provided by the Markovian analysis. We could
also consider a situation with multiple consignees and ship-
pers.
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