
Abstract - Proclaiming a revolution before it has even started is keen. This is what the German government did when calling for 

a 4th one in the industry sector. Accompanied by the help of information and communication technology, industrial supply 

chains at all levels are expected to increase efficiency through smart factories, digital twin, and big data analytics. At the end 

there is a paradigm shift where smart factories share information with each other to steer themselves autonomously. Many 

questions still need to be answered on this rocky road. For this purpose, we address an operational production planning problem 

in smart factories in this paper. A brief overview on current state of the art literature in the field is given first. Then, we identify 

challenges stemming from smart factory principles and include them in a mixed-integer programming model. Finally, the model 

is validated through a set of scenarios and some results are presented. 
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1 INTRODUCTION 

The term Industry 4.0 (I4.0) has no unique definition. It refers 

to a paradigm shift in industry standards, which is pronounced 

as the 4th industrial revolution. While there is no uniform 

perception for what can be considered as I4.0 standard, 

extensive usage of information and communication technology 

is manifested within its spectrum and is a useful tool to achieve 

mass personalization (MP). However, the satisfaction of 

customers through MP creates challenges for today's production 

standards. Producing personalized items on masse requires a 

highly flexible production line. For that reason, the principle of 

modular, and therefore flexible, production is favoured within 

I4.0, which enables a convertible factory, that can adapt to 

demand variations [BMWK, nd].   

Furthermore, the extensive use of data from external and 

internal sources interconnected through cloud technologies shall 

steer a production and moreover a supply chain autonomously. 

For this, machines and other entities act as cyber-physical 

systems (CPS) and are connected together in the Internet of 

Things (IoT), where they generate and process information in 

real-time. Products receive a memory which enables them to 

orchestrate their way to completion. The role of human workers 

is of central significance within the autonomous production 

flow. Their value as the most flexible and adaptive entity 

qualifies them for a wide range of tasks ranging from 

monitoring to verifying production strategies instructed by the 

system. These technologies and principles ultimately pave the 

way towards, which is depending on the geographical location 

named, a smart factory, smart manufacturing, or real-time 

manufacturing [Strozzi et al., 2017].   

The explosion in the availability and accessibility of data in 

smart value chains and breakthrough advances in machine 

learning (ML) approaches [Gopal, 2019] boost I4.0 research. 

Information must be adequately leveraged towards data-driven 

decision models along with efficient and fast solution 

algorithms in order to promote real-time/smart decision-making 

in modern supply chains (SC). A recent survey [McKinsey & 

Company, 2019] reveals that 61% of executives report 

decreased costs and 53% report increased revenues as a direct 

result of introducing AI into their SCs. While the vision is clear 

and components as well as data are available, modular 

production lines and ranging workforce tasks unfold new 

challenges for decision-makers. Therefore, real-time 

manufacturing is yet to be investigated to achieve peak 

efficiency within smart factories. 

Literature on operations research (OR) topics within the scope 

of smart factories is quite scant and the clear link to new 

challenges is often neglected. Therefore, we investigate 

operational planning in smart factories with the goal to 

overcome pending new challenges stemming from its inherent 

paradigm shift. More precisely, we focus on a digital and smart 

manufacturing network comprising of an assembly facility and 

a set of vertically integrated component\sub-assembly facilities 

that are connected to a cloud manufacturing environment. Each 

manufacturing facility in this SC is comprised of automated, 

digitally-connected and reconfigurable machines equipped with 

a wide range of sensors along with a fleet of partially trained 

workforce. Therefore, real-time data in terms of the condition of 

machines and production capacities is shared on the cloud. 

Ultimate goal is to unite these aspects in an integrated decision-

making model. 

This paper is structured as follows. Section 2 gives a brief 

overview of the current literature. Section 3 presents the 

problem as well as the mathematical model. Section 4 follows 
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with some interpreted results before section 5 concludes the 

paper. 

2 LITERATURE REVIEW 

Decision models for smart factories 
An increasing number of research publications appeared in the 

past couple of years that mainly focus on the conceptual design 

of smart SCs [Dolgui et al., 2020, Ivanov et al., 2016, 2021]. 

Further, research around smart factory is often focused on 

managerial aspects and changing requirements of production at 

a conceptual level [Strozzi et al., 2017]. Guo et al. [2020b] 

present a roadmap for conditioning fixed-position assembly 

islands (FPAI) for I4.0, by applying the graduation-inspired 

assembly system, called Graduation Manufacturing Systems 

(GMS), proposed by Guo et al. [2020a]. The requirements for 

flexibility and customization are challenging for FPAI, resulting 

in configuration and production dilemmas. Through the 

adaption of GMS to FPAI, the traditional assembly line can be 

"retrofitted" for I4.0 principles. In the same vein, Li and Huang 

[2021] investigate an assembly line balancing problem within 

the context of GMS and I4.0. The authors show how demanding 

production-intralogistics processes can be optimized by 

leveraging I4.0's real-time data collection and analytics. 

To the extent of the authors' knowledge, quantitative and data-

driven approaches for I4.0 supply chain management (SCM) are 

not explored to their full extent in the literature, but the topic 

receives growing attention. Katoozian and Zanjani [2022] 

investigate supply network design within the context of MP by 

proposing a mixed-integer programming (MIP) model. The 

authors consider different design complexity levels for elements 

of the BOM. Furthermore, batch sizes and their impact on the 

choice of suppliers is modelled via considering piece-wise 

linear cost functions. 

Ohand Jeong [2019] propose a real-time single-period SC 

tactical planning model for smart manufacturing SCs. In 

particular, a deterministic model with discrete demand is 

developed in which re-planning during a lead-time is permitted 

to adapt the SC to a changing environment. To create stability 

in performance, upper bounds for the utilization rates of 

manufacturers and distributors and lead time are introduced. 

Consequently, to approximate real-time decision-making, the 

minimization of lead time is considered besides maximizing 

profit. Perraudat et al. [2022] introduce a tactical capacity 

planning problem set in a flexible manufacturing environment. 

In their model, machines must be qualified to process a product. 

The goal is to minimize the total costs of performed 

qualifications, while still meeting demand and capacity 

constraints. The authors first propose a deterministic version, 

which is transformed into a robust model to cope with uncertain 

demand.  

Malladi et al. [2020] investigate a dynamic mobile multi-

location production-inventory control problem. The authors 

consider a reconfigurable and mobile production system, which 

can be transported between several locations to adapt 

production capacities. Since the number of locations and 

horizon let the model exponentially grow, approximate dynamic 

programming is used to solve the problem. Several heuristics 

with different model simplifications are introduced and 

compared. Ivanov et al. [2016] investigate SC dynamic 

scheduling for smart factories. The idea is that operation 

execution and machine availability are dynamically distributed 

in time over the planning horizon, such that not all operations 

and machines are involved in the decision making at the same 

time. For that, the authors use optimal program control to 

dynamically decompose the NP-hard scheduling problem. 

Coordinated scheduling in SCs under dynamic market 

conditions is addressed in Jamrus et al. [2020]. The authors 

consider fluctuations in production time and solve the problem 

with an integrated hybrid particle swarm optimization and 

genetic algorithm. 

In summary, researchers acknowledge the potentials of I4.0. 

This is demonstrated by the wide range of conceptual studies 

about implementing I4.0 within existing manufacturing 

structures or how to prepare established settings for I4.0 

implementation to facilitate a successful transition. Also, some 

operational aspects, such as assembly line balancing or 

production-inventory problems, are partially covered in a 

handful of studies. Additionally, research on incorporating I4.0 

aspects into production planning and other operational-level 

planning problems is still quite scant. 

 

Predictive & condition-based maintenance 

Maintenance is a big share of the total manufacturing costs. The 

goal of predictive maintenance is thereby, among others, to 

predict the remaining useful life of a machine, by collecting data 

from multiple sensors. Zonta et al. [2020] recently reviewed 

predictive maintenance in I4.0. The authors state among the 

most used ML algorithms in the most current literature are 

Neural Networks (NN) and DL approaches. They also highlight 

that research often is restricted to simple alert monitoring, 

leaving it open whether maintenance actions are subsequently 

conducted or not. Applying predictive maintenance can 

consequently be a powerful tool to boost CBM. CBM combines 

data-driven reliability models with sensor data and aims to 

reduce unnecessary maintenance actions [Alaswad and Xiang, 

2017] and has received considerable attention within the context 

of I4.0. Kumar et al. [2018] provide a big data driven framework 

to accurately predict remaining machine life and thereby exploit 

the benefits of CBM. Ghaleb et al. [2021] consider the joint 

optimization of maintenance planning and production 

scheduling in smart manufacturing systems. The authors 

consider uncertain event, such as the arrival of new jobs and due 

date changes. Furthermore, the production rate of a machine is 

affected by its current deterioration state and random machine 

breakdowns can occur at any degradation state. Deterioration, 

failure, and repair rates to recover machine performance are 

assumed to be constant and follow an exponential distribution. 

The authors introduce a two-stage hybrid genetic algorithm to 

solve the problem. van Staden and Boute [2021] investigate the 

cost optimal policy given a set of available information from 

machine sensors. To formulate the problem, the authors use a 

partially observable Markov decision process in which the true 

state of the monitored system is only stochastically related to the 

monitoring process. Depending on the believed underlying 

deterioration state of the system, a decision-maker has the 

choice to keep monitoring with only internal data, acquire 

extended information from external data sources, or initiate 

preventive maintenance actions. In general, maintenance 

receives significant attention in the literature. Proven concepts, 

such as CBM, benefit from the support of ML in form of 

predictive maintenance. However, current research on 

predictive maintenance is often focused on alert monitoring, 

neglecting the question of how to embed it in decision-making 

and draw optimal conclusions from the information provided.  

Given the elaborated gaps, this paper aims to answer the 

question on how to represent specific challenges prevalent to 

operational production planning in smart factories in a 

mathematical decision model. As such, we investigate the 

impact of incorporating machine degradation states, captured 



from sensors into the production planning process in smart 

manufacturing settings.  

3 PROBLEM DESCRIPTION AND FORMULATION 

3.1 Problem description 

I4.0 pledges to change manufacturing in a fundamental way. 

One driving factor is the demand for product customizability. 

The satisfaction of customers through MP creates challenges for 

today's production standards in a way, that it has to deal with 

vast number of products inheriting complex bill-of-material 

(BOM), similar to the one depicted in figure 1, and 

simultaneously small batch sizes. 

To manifest that, a pivotal aspect is the realization of a modular 

manufacturing setup. Machines are not arranged in a fixed 

structure, but flexible and mobile. This allows to activate or 

deactivate a number of machines, depending on the demand and 

BOM of a certain product within a short period. Accordingly, 

products are processed through the facilities in a predefined, but 

not standardized path, as shown in figure 2. However, the 

flexibility gained is also subject to some challenges and 

limitations. While planning for space already plays a vital role 

in strategic facility layout planning, it now becomes an 

additional and new aspect for operational level production 

planning. What and how much can be produced in a day heavily 

relies on which machine groups and how many machines within 

that group are activated and necessary for the BOM of the items 

to be produced. The physical space within a manufacturing 

facility is thereby a natural limitation to that everyday decision. 

Besides time, activating and deactivating machines flexibly 

additionally requires manpower with matching skill sets. They 

are further required to set up machines correctly and accordingly 

to the specific requirements of the items scheduled on them. Due 

to MP, where many different products with unique BOMs 

coexist, assigning qualified workers to these tasks is necessary. 

Even if a worker is qualified to process a machine, additional 

training might be needed regularly to run different, 

individualized items on that machine. Tracking and training 

skills of highly qualified workforce therefore becomes a crucial 

aspect of efficient operational planning. 

Another key aspect of I4.0 is its self-steering characteristic. For 

that, items need to be aware of their state at any time in a way 

that the know which machines are available as well as which are 

required for their production. Figure 3 exemplary depicts the 

machine groups. The blue frame is the subset of machines 

needed to process the item. Machines framed by the yellow and  

gray lines are the subsets of machines with identical operational 

tasks. In that case, processing an item would require scheduling 

it on at least one machine of the yellow and gray subset. 

Simultaneously, in smart factories, machines are typically 

equipped with smart sensors, which track, trace and send 

information to the cloud in real-time. They allow to monitor the 

current condition and degradation status of a machine. This 

development enables condition-based maintenance (CBM). We 

are assuming, that this information is available and incorporate 

it by considering a random deterioration factor affecting the 

state of a machine. Consequently, decisions about maintenance 

actions (partial or full maintenance) are made based on the 

actual machine state, allowing to conduct more preventive and 

precise maintenance actions in a shorter time. 

3.2 Problem formulation 

3.2.1 Notation 

Sets 
M: Set of modular machines m 

G: Set of machine groups g conducting the same tasks 

I: Set of items i 

K: Set of workers k 

F: Set of facilities f 

T: Set of time periods t 
 

Figure 1. Exemplary BOM of a product 

Figure 2. Two echelon SC with modular production facilities 

Figure 3. Machine groups 



Subsets 
IP: Subset of final product i 

IA: Subset of sub-assemblies i 

IC: Subset of components i 

I(f): Subset of items i produced in facility f 

S(i): Subset of superordinates of item i in the BOM 

G(i): Subset of machine groups g required to produce item i 

K(f): Subset of workers k in facility f 

M(f): Subset of machines m in facility f 

M(i): Subset of machines m associated to item i 

M(i,g): Subset of machines m of machine group g required to 

produce item i 

M(f,i,g): Subset of machines m of machine group g in facility f 

required to produce item i 

 

Parameters 
dt

i: Demand for item i in period t 

ci: Cost of producing item i 

am: Cost of activating machine m 

cn: Cost of maintenance action n 

 hi: Inventory holding cost of item i 

bi: Penalty cost for backorder of item i 

ptn: Process time of maintenance action n 

lt: Nominal capacity 

λsi: Amount of item i required to produce superordinate item s 

egi: Cost of training a worker on machine group g for 

processing item i 

αt
m: Random deterioration rate between [0.03,0.1] of machine 

m in period t 

spf: Available space in facility f 

βim: Capacity consumption of item i on machine m 

σm: Space consumption of machine m 

rn: Restored level of machine state when undertaking 

maintenance action n 

wsgi: Required time to training a worker on machine group g 

for processing item i 

M: Random very large number 

B0
i: Initial amount of backorder of item i 

 I0
i: Initial amount of inventory of item i 

D0
m: Initial deterioration level of machine m 

Sk0
gki: Initial qualification of worker k to process item i on 

machine group g 

 

Decision variables 
Qt

i: Number of produced items i in period t 

Qt
im: Number of produced items i on machine m in period t 

Bt
i: Amount of backorder of item i at the end of period t 

It
i: Amount of inventory of item i at the end of period t 

Cat
m: Capacity of machine m in period t 

Dt
m: Deterioration level of machine m in period t 

Ht
kim: Percentage of a regular shift that worker k is assigned to 

process item i on machine m in period t 

Plt
m: Whether machine m is activated in period t 

Skt
gki: Whether worker k is qualified to process item i on 

machine group g in period t 

Trt
gki: Whether worker k is trained to process item i on machine 

group g in period t 

Xt
nm: Whether maintenance action n is applied to machine m in 

period t 

Zt
m: Auxiliary decision variable for linearizing constraint (7) 

Yt
nm: Auxiliary decision variable for linearizing constraint (14) 

3.2.2 Mathematical formulation 

min ∑(∑ 𝑐𝑖𝑄𝑖
𝑡

𝑖

𝑇

𝑡

+ ∑ ℎ𝑖𝐼𝑖
𝑡 + ∑ 𝑏𝑖𝐵𝑖

𝑡

𝑖𝑖

+ ∑ 𝑎𝑚𝑃𝑙𝑚
𝑡

𝑚

 

+ ∑ ∑ 𝑐𝑛𝑋𝑛𝑚
𝑡

𝑚

 + ∑ ∑ ∑ 𝑢𝑔𝑖𝑇𝑟𝑔𝑘𝑖
𝑡

𝑖𝑘𝑔

)

𝑛

 

 

 

(1) 

 

 
𝐼𝑖

𝑡 − 𝐵𝑖
𝑡 = 𝐼𝑖

𝑡−1 − 𝐵𝑖
𝑡−1 − 𝑑𝑖

𝑡 + 𝑄𝑖 
𝑡  𝑡 = 2, … , 𝑇, ∀𝑖 ∈ 𝐼𝑃 

 

𝐼𝑖
𝑡 − 𝐵𝑖

𝑡 = 𝐼𝑖
0 − 𝐵𝑖

0 − 𝑑𝑖
𝑡 + 𝑄𝑖 

𝑡  𝑡 = 1, ∀𝑖 ∈ 𝐼𝑃 
 

𝐼𝑖
𝑡 − 𝐵𝑖

𝑡 = 𝐼𝑖
𝑡−1 − 𝐵𝑖

𝑡−1 − ∑ 𝜆𝑠𝑖

𝑠∈ 𝑆(𝑖)

𝑄𝑠
𝑡 + 𝑄𝑖 

𝑡    𝑡 = 2, … , 𝑇, 

     ∀𝐼 ∈ 𝐼𝐴 ∪ 𝐼𝐶  
 

𝐼𝑖
𝑡 − 𝐵𝑖

𝑡 = 𝐼𝑖
0 − 𝐵𝑖

0 − ∑ 𝜆𝑠𝑖

𝑠∈ 𝑆(𝑖)

𝑄𝑠
𝑡 + 𝑄𝑖 

𝑡    𝑡 = 1, 

     ∀𝐼 ∈ 𝐼𝐴 ∪ 𝐼𝐶  
 

∑ 𝑄𝑖𝑚
𝑡

𝑚∈𝑀(𝑖,𝑔)

= 𝑄𝑖
𝑡 ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐼𝑃 ∪ 𝐼𝐴, ∀𝑔 ∈ 𝐺(𝑖) 

 

∑ 𝛽𝑖𝑚𝑄𝑖𝑚
𝑡 ≤ 𝐶𝑎𝑚

𝑡 𝑃𝑙𝑚
𝑡   ∀𝑡 ∈ 𝑇, ∀𝑚 ∈ 𝑀(𝑓), ∀𝑓 ∈ 𝐹

𝑖  𝑖𝑛 𝐼(𝑓)

 

 

∑ 𝜎𝑚𝑃𝑙𝑚
𝑡 ≤ 𝑠𝑝𝑓  ∀𝑡 ∈ 𝑇, ∀𝑓 ∈ 𝐹 

𝑚∈𝑀(𝑓)

 

 

∑ 𝑄𝑘𝑖𝑚
𝑡  

𝑘∈𝐾(𝑓)

= 𝑄𝑖𝑚
𝑡   ∀𝑡 ∈ 𝑇, ∀𝑓 ∈ 𝐹, ∀𝑖 ∈ 𝐼(𝑓),  

     ∀𝑚 ∈ 𝑀(𝑓) 
 

𝛽𝑖𝑚𝑄𝑘𝑖𝑚
𝑡 ≤ 𝑙𝑡𝐻𝑘𝑖𝑚

𝑡   ∀𝑡 ∈ 𝑇, ∀𝑓 ∈ 𝐹, ∀𝑚 ∈ 𝑀(𝑓),  
     ∀𝑖 ∈ 𝐼(𝑓), ∀𝑘 ∈ 𝐾(𝑓) 
 

∑ 𝐻𝑘𝑖𝑚
𝑡

𝑚∈𝑀(𝑖,𝑔)

≤ 𝑆𝑘𝑔𝑘𝑖
𝑡 −  

𝑤𝑠𝑔𝑖

𝑙𝑡
𝑇𝑟𝑔𝑘𝑖

𝑡   ∀𝑡 ∈ 𝑇,   

    ∀𝑔 ∈ 𝐺, ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐼𝑃 ∪ 𝐼𝐴 
 

𝑆𝑘𝑔𝑘𝑖
𝑡 = 𝑆𝑘𝑔𝑘𝑖

𝑡−1 + 𝑇𝑟𝑔𝑘𝑖
𝑡   𝑡 = 2, … , 𝑇, ∀𝑔 ∈ 𝐺, ∀𝑘 ∈ 𝐾, 

     ∀𝑖 ∈ 𝐼 
 

𝑆𝑘𝑔𝑘𝑖
𝑡 = 𝑆𝑘𝑔𝑘𝑖

0 + 𝑇𝑟𝑔𝑘𝑖
𝑡   𝑡 = 1, ∀𝑔 ∈ 𝐺, ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐼 

 

𝐷𝑚
𝑡 = 𝐷𝑚

𝑡−1 − 𝛼𝑚
𝑡 𝑃𝑙𝑚

𝑡 + ∑ 𝑋𝑛𝑚
𝑡

𝑛

(𝑟𝑛 − 𝐷𝑚
𝑡−1 + 𝛼𝑚

𝑡 )  

     𝑡 = 2, … , 𝑇, ∀𝑚 ∈ 𝑀 
 

𝐷𝑚
𝑡 = 𝐷𝑚

0 − 𝛼𝑚
𝑡 𝑃𝑙𝑚

𝑡 + ∑ 𝑋𝑛𝑚
𝑡

𝑛

(𝑟𝑛 − 𝐷𝑚
0 + 𝛼𝑚

𝑡 ) 

     𝑡 = 1, ∀𝑚 ∈ 𝑀 

 

𝐶𝑎𝑚
𝑡 = 𝑙𝑡𝐷𝑚

𝑡−1 −  ∑ 𝑝𝑡𝑛𝑋𝑛𝑚
𝑡

𝑛

  𝑡 = 2, … , 𝑇, ∀𝑚 ∈ 𝑀 

 

𝐶𝑎𝑚
𝑡 = 𝑙𝑡𝐷𝑚

0 −  ∑ 𝑝𝑡𝑛𝑋𝑛𝑚
𝑡

𝑛

  𝑡 = 1, ∀𝑚 ∈ 𝑀 

 

∑ ∑ 𝐻𝑘𝑖𝑚
𝑡 ≤ 𝑃𝑙𝑚

𝑡

𝑖∈𝐼(𝑓)𝑘∈𝐾(𝑓)

  ∀𝑡 ∈ 𝑇, ∀𝑚 ∈ 𝑀(𝑓), 

∀𝑓 ∈ 𝐹 
 

∑ ∑ 𝐻𝑘𝑖𝑚
𝑡

𝑚∈𝑀(𝑖)𝑖∈𝐼(𝑓)

≤ 1  ∀𝑡 ∈ 𝑇, ∀𝑘 ∈ 𝐾(𝑓), ∀𝑓 ∈ 𝐹 

 

∑ 𝑋𝑛𝑚
𝑡

𝑛

≤ 1  ∀𝑡 ∈ 𝑇, ∀𝑚 ∈ 𝑀 

 

0 ≤ 𝐷𝑚
𝑡 ≤ 1  ∀𝑡 ∈ 𝑇, ∀𝑚 ∈ 𝑀 

 

0 ≤ 𝐻𝑘𝑖𝑚
𝑡 ≤ 1  ∀𝑡 ∈ 𝑇, ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐼, ∀𝑚 ∈ 𝑀 

 

𝑃𝑙𝑚
𝑡 , 𝑆𝑘𝑔𝑘𝑖

𝑡 , 𝑇𝑟𝑔𝑘𝑖
𝑡 , 𝑋𝑛𝑚

𝑡 ∈ {0,1}  ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐼,   

     ∀𝑛 ∈ 𝑁, ∀𝑔 ∈ 𝐺, ∀𝑘 ∈ 𝐾, ∀𝑚 ∈ 𝑀 
 

𝑄𝑖
𝑡, 𝑄𝑖𝑚

𝑡 , 𝐼𝑖
𝑡 , 𝐵𝑖

𝑡 , 𝐶𝑎𝑚
𝑡 ≥ 0  ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐼, ∀𝑚 ∈ 𝑀 
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The objective function (1) minimizes costs of production, 

inventory, and backorder of items, maintenance actions, 

activation of machines, and workforce training. The inventory 

balance for all products is defined by constraint (2) as the level 

of inventory from the previous period minus the difference of 

produced products and demand. Constraint (3) defines the 

inventory for all products for the initial period. Constraints (4) 

and (5) define the inventory for all sub-assemblies and 

components for the respective periods. Constraint (6) ensures 

that the total production of an item is equal to the total 

production within each machine group that is required for that 

item. Constraint (7) limits the machine capacity, which is only 

available if a platform is activated for a machine. Constraint (8) 

limits the number of activated machines by the sum of their 

respective space consumption. Constraint (9) equals the number 

of produced items on a machine under the supervision of several 

workers to the total amount of produced items on that machine. 

Constraint (10) is the capacity constraint depending on the 

available time of assigned workforce. Constraint (11) allows a 

workers' assignment to a machine depending on the workers' 

skill. If a worker has not the required skill to work on a machine 

group and/or to process an item on that machine group, training 

can be scheduled. Constraints (12) and (13) update the workers' 

skills for the respective periods depending on their previous 

skills and scheduled training. Constraints (14) and (15) describe 

the deterioration level of the machines at the end of the 

respective periods. It is composed of the deterioration status of 

the previous period minus the random factor α plus a term 

equalizing the deterioration when maintenance rn is conducted. 

Accordingly, machine deterioration is affected by the decision 

on whether a machine is activated, and maintenance is 

scheduled. Constraint (16) defines the capacity per period, 

which is affected by multiplying the deterioration level of the 

end of the previous period with the working hours per day minus 

the required time for conducting a maintenance action. 

Consequently, the capacity of a machine dynamically relies on 

the decisions considering maintenance actions as well as 

machine activation. Constraint (17) defines the initial capacity 

of a machine. Constraint (18) limits the sum of proportional 

assigned workers and items to a machine. Constraint (19) limits 

the sum of assigned machines and items to a single worker to 

one.  Constraint (20) restricts the amount of maintenance tasks 

per period and machine to one. Constraints (21) - (24) are 

domain constraints. Additionally, the right-hand side of 

constraints (7), and (14) are linearized by using auxiliary 

decision variables and the Big-M method. 

New set of constraints replacing constraint (7) where M is a 

random very large number: 

 

∑ 𝛽𝑖𝑚𝑄𝑖𝑚
𝑡

𝑖∈𝐼(𝑓)

≤ 𝑍𝑚
𝑡   ∀𝑡 ∈ 𝑇, ∀𝑚 ∈ 𝑀(𝑓), ∀𝑓 ∈ 𝐹 

𝑍𝑚
𝑡 ≤ 𝑀 ∗ 𝑃𝑙𝑚

𝑡   ∀𝑡 ∈ 𝑇, ∀𝑚 ∈ 𝑀 

𝑍𝑚
𝑡 ≤ 𝐶𝑎𝑚

𝑡   ∀𝑡 ∈ 𝑇, ∀𝑚 ∈ 𝑀 

𝑍𝑚
𝑡 ≥ 𝐶𝑎𝑚

𝑡  − 𝑀 ∗ (1 − 𝑃𝑙𝑚
𝑡 ) ∀𝑡 ∈ 𝑇, ∀𝑚 ∈ 𝑀 

𝑍𝑚
𝑡 ≥ 0  ∀𝑡 ∈ 𝑇, ∀𝑚 ∈ 𝑀  

 

New set of constraints replacing constraint (14): 

𝐷𝑚
𝑡 = 𝐷𝑚

𝑡−1 − 𝛼𝑡𝑃𝑙𝑚
𝑡 +  ∑(𝑋𝑛𝑚

𝑡 (𝑟𝑛 +  𝛼𝑡) − 𝑌𝑛𝑚
𝑡 )

𝑛

 

     𝑡 = 2, … , 𝑇, ∀𝑚 ∈ 𝑀 
 

𝑌𝑛𝑚
𝑡 ≤ 𝑀 ∗ 𝑋𝑛𝑚

𝑡   𝑡 = 2, … , 𝑇, ∀𝑛 ∈ 𝑁, ∀𝑚 ∈ 𝑀 

𝑌𝑛𝑚
𝑡 ≤ 𝐷𝑚

𝑡−1  𝑡 = 2, … , 𝑇, ∀ 𝑛 ∈ 𝑁, ∀𝑚 ∈ 𝑀 

𝑌𝑛𝑚
𝑡 ≥ 𝐷𝑚

𝑡−1 − 𝑀 ∗ (1 − 𝑋𝑛𝑚
𝑡 )  𝑡 = 2, … , 𝑇, ∀𝑛 ∈ 𝑁, ∀𝑚 ∈ 𝑀  

𝑌𝑛𝑚
𝑡 ≥ 0  𝑡 = 2, … , 𝑇, ∀𝑛 ∈ 𝑁, ∀𝑚 ∈ 𝑀 

4 RESULTS 

All problem instances are solved by CPLEX 20.1 and run on a 

Core i7 CPU 2.90 GHz computer equipped with 16 GB RAM 

under Windows 10.  

Table 1 presents the different settings chosen for different 

scenarios in our experimental settings. Columns 2 - 4 define 

respectively the number of products, machines, and workforce 

for each setting in column 1. The model was tested for a 

planning horizon of T = 4 days and demand randomly created 

between [30,50] for each period and product. The deterioration 

state was randomly initialized between [0.7,0.9] for each 

machine.  

Table 2 presents the results of model (1)-(19) under different 

scenarios settings, defined in table 1. The scenario choice 

primarily serves the purpose of validating the proposed model. 

Our goal is to investigate how the model behaves under extreme 

Scenario # of products # of machines 
Workforce 

size 

Backorder Inventory Maintenance Training 

P A P A P A P A 

1 Low Low Low 0 0 0 0 0 4 0 0 

2 Medium Medium Medium 1 0 2 18 0 6 0 0 

3 Medium Medium Low 278 0 0 0 0 1 0 0 

4 Medium Low Medium 278 0 0 0 0 1 0 0 

5 Medium Low Low 347 2 0 0 0 6 0 0 

6 High High High 15 2 0 11 0 5 0 0 

7 High High Medium 279 0 0 18 0 4 0 0 

8 High Medium High 3 0 0 6 0 8 0 0 

9 High Medium Medium 251 2 0 5 0 2 0 0 

10 High Low Low 742 0 0 1 0 9 3 0 

11 High Low High 621 0 0 0 0 9 2 0 

12 High High Low 622 0 0 0 0 0 0 0 

13 High Medium Low 613 3 0 4 0 0 1 1 

14 High Low Medium 623 3 0 0 0 9 0 0 

6* High High High 253 15 0 1593 0 18 0 0 

Setting Products 
Machines Workforce 

P A P A 

High 4 18 54 6 18 

Medium 3 12 39 5 13 

Low 2 9 27 3 9 

Table 1. Scenario settings ; P = Final-

product level ; A= Sub-assembly level 

Table 2. Scenario results 



situations in terms of key parameters. Columns 5 - 8 present 

optimal decisions on backorder, inventory, maintenance, and 

training, further subdivided into the final product and sub-

assembly levels. The columns for backorder and inventory 

present respectively the accumulated amount of all items across 

the planning horizon. The columns for maintenance and training 

present the accumulated amount of scheduled maintenance 

actions and workforce training respectively across the planning 

horizon.  

It is worth mentioning that workforce training is conducted only 

in scenarios 10, 11, and 13, all configured with a high number 

of products. Training in scenario 10 and 13 can be explained by 

the low amount of available workforce in the beginning of 

planning horizon, making the training inevitable. Interestingly, 

scenario 11 is configured with a high initial level of workforce. 

As explained in section 3, labor skills are defined per machine 

group and product, making it possible that a worker is qualified 

to run a machine group, but not for every product. For that 

reason and due to the high number of products, it is possible that 

additional training is needed to receive an optimal result under 

this scenario.  

Some maintenance actions can be observed in most scenarios on 

the sub-assembly level, whereas there is no maintenance action 

on the final production level. A deeper analysis of scenario 8 

showed, that the highest machine group utilization averaged 

over the planning horizon T at the final product level is 45% 

compared to 85% at the sub-assembly level. It can be concluded 

that the sub-assembly facility is in general the bottleneck and 

maintenance actions are of higher importance. The absence of 

maintenance actions in scenarios 12 and 13 can further be 

explained by the configurations, as less labors than machines are 

available and machines are accordingly interchanged. 

In contrast to backorder decisions, only little inventory 

decisions can be observed on the sub-assembly level and 

vanishingly little on the final product level. A factor can be the 

rather constant demand over the planning horizon T. To further 

investigate this, scenario 6* was tested with a randomized 

demand between [10,20] in the first two periods, and a 

considerable larger demand of 100 in the last two periods for 

each product. Consequently, the model builds up inventory at 

the sub-assembly level in the early periods, to compensate the 

larger demands in following periods. Backorder decisions are  

very rare at the sub-assembly level. On the contrary, backorder 

only occurs at the final production level. Except for the balanced 

scenarios 1, 2, and 6, backorder commonly occurs. This is also 

due to the fact that machine and workforce configurations are 

either on the same level or lower than the number of products in 

these scenarios. Surprisingly, scenario 8 shows very little 

backorder, even though the number of machines is set as 

medium, and the number of products is high. When comparing 

with scenario 9, it can be seen that the backorder is much higher, 

most likely due to the medium workforce size. Other scenarios, 

e.g. when comparing scenarios 2 and 4, show the effect of 

different machine configurations on the amount backorders. 

Furthermore, scenario 13 records less backorders compared to 

scenario 12, even though less machines are available. The same 

can be observed when comparing scenarios 7 and 9. This can be 

explained by the respective BOMs of products and accordingly 

required machine groups. Given that the level of workforce and 

products are similar in the compared scenarios, the model might 

allow more total backorder when more machines are available 

in favor of producing a product with a higher unit backorder 

cost, in order to minimize total costs.  
 

 

5 CONCLUSION 

This paper presented a MIP operational production planning 

model incorporating features stemming from smart factory 

principles which are crucial to operational production planning. 

Goal was to fill in the gap and need for decision-making models 

that bridge and support the challenging transition from existing 

production facilities towards a smart factory. Several numerical 

experiments were conducted and the behavior of the model 

evaluated by interpreting the results. The model showed that it 

can act as a valuable decision-support tool as is possible to adapt 

to different kinds of scenarios. 

Yet, there is a number of enhancements that could be addressed 

in our future work. It is desirable to test the model at larger 

instances, e.g. for a longer time period as well as for a larger 

number of products with more complex BOMs. Yet, its inherit 

complexity requires an efficient decomposition algorithm to 

cope with considerably larger instances. Finally, the inclusion 

of uncertain parameters can be valuable additions to the model. 

Creating robust models for smart factories can therefore be a 

promising research avenue for future smart factory applications. 
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