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Abstract

In this paper, explicit lower and upper bounds on the value-at-risk (VaR) for the sum of possibly dependent risks are derived
when only partial information is available about the dependence structure and the individual behaviors. When the marginal
distributions are known, a reformulation of a result of Embrechts et al. [Finan. Stoch. 7 (2003) 145–167] makes it possible, under
some regularity conditions, to compute explicit bounds for the VaR under various dependence scenarios. In the case where only
the means and the variances of the risks are available, explicit bounds are obtained from an optimization over all possible values
of the correlation matrix associated with the vector of risks. Analytical and numerical investigations are presented in order to
investigate the quality of these bounds.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In actuarial science and in finance, value-at-risk measures, at a predetermined confidence level and under normal
market conditions, the worst loss that an institution can suffer over a given time period. In risk management, it is
thus an important tool since it allows for the quantification of the volatility of a company’s assets.

In theoretical terms, the value-at-risk (VaR) of a random variable at levelα is simply defined as theαth quantile
of its distribution. Due to its computational simplicity and for some regularity reasons, value-at-risk remains one of
the most popular measures of risk despite the fact that it has been severely criticized for not being coherent. More
specifically, the VaR is not sub-additive, and hence the risk associated to a given portfolio can be larger than the
sum of the stand-alone risks of its components when measured by the VaR; see, e.g.,Artzner et al. (1999). In order
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to circumvent this problem,Embrechts et al. (2003)use the concept of copula to bound the value-at-risk of the sum
of several risks when the marginal distributions are known.

The first purpose of this article is to provide explicit expressions for the bounds proposed byEmbrechts et al.
(2003)under various distributional assumptions. This is achieved at the price of some restrictions on the densities
of the risks. The second goal of the paper is to derive bounds when only the first two moments of the risks are
known.

The paper is organized as follows. The necessary definitions and notations are recalled in Section2. Explicit
expressions for the lower and the upper bounds are then obtained in Section3 under some restrictions on the
associated densities of the risks. In Section4, the situation in which only the means and the variances of the risks
are known is treated. A reformulation, in a value-at-risk context, of the univariate extreme distributions ofKaas and
Goovaerts (1986)leads to lower and upper bounds for the value-at-risk of the sum of several risks by optimizing
over all possible values of the associated correlation matrix. This method is shown to be efficient when compared
to another approach using copula theory. Finally, Section5 is devoted to the comparison of the various bounds
encountered in the paper.

2. Preliminaries

The basic concepts and results to be used in the remaining of the paper are given below.

Definition 2.1. Let R̄ = R ∪ {±∞} be the extended real line and define inf∅ = −∞. The generalized left-
continuous inverse of a non-decreasing functionf : R→ R is the mappingf−1 : R→ R defined by

f−1(t) = inf {s ∈ R|f (s) ≥ t}.

From this definition, one has thatf−1 is non-decreasing. In addition, iff is right-continuous andf−1(t) < ∞,
thenf (s) ≤ t implies thatf−1(t) ≥ s.

Definition 2.2. LetF be the (right-continuous) distribution function of a random variableX. Then, the value-at-risk
of X at levelα is defined as

VaRα(X) = F−1(α).

In many financial applications, one wants to evaluate the risk level of a portfolio ofn ≥ 2 possibly dependent
risks. This calls for the study of the dependence structure among the risks. In modern dependence theory, this is
accomplished via the use of copulas. For an excellent exposition, seeNelsen (1999). Formally, let the multivariate
distribution function of a random vectorX = (X1, . . . , Xn) be defined asH(x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤
xn), and denote byF1, . . . , Fn its associated marginal distributions. The theorem stated next, due toSklar (1959),
enablesH to be linked withF1, . . . , Fn through a distribution functionC : [0,1]n → [0,1] with uniform marginals,
called a copula.

Theorem 2.1. If H is a multivariate distribution function whose univariate marginals areF1, . . . , Fn, there exists a
multidimensional copula C such thatH(x1, . . . , xn) = C{F1(x1), . . . , Fn(xn)} for all x1, . . . , xn ∈ R. If F1, . . . , Fn

are continuous, then C is unique.

An interesting feature of copulas is that whenever the marginal distributions are continuous,C contains
all the information about the dependence structure of (X1, . . . , Xn). For example, the theoretical value of de-
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pendence measures like Kendall’s tau and Spearman’s rho depend only on the copula underlying a given
population.

The following definition gives the copula analogue of the notion of exchangeable random variables. This property
is shared by members of many well-known families of copulas.

Definition 2.3. A copulaC is exchangeable ifC(uτ(1), . . . , uτ(n)) = C(u1, . . . , un) for any permutationτ of the set
{1, . . . , n}. Whenn = 2,C is said to be symmetric.

Now the definition of the dual associated to a given copula is provided. This notion will prove crucial throughout
this work.

Definition 2.4. LetC be the distribution function of a random vector (U1, . . . , Un) with uniform marginals. Then,
the dual ofC is defined by

Cd(u1, . . . , un) = P

(
n⋃

i=1

{Ui ≤ ui}
)
.

It is possible to order copulas by comparing them pointwise. Explicitly, letC1 andC2 ben-variate copulas such
that for allu = (u1, . . . , un) ∈ [0,1]n, the inequalityC1(u) ≤ C2(u) holds. It is then said thatC1 is smaller thanC2,
termedC1 ≤ C2. A useful result is that any copulaC lies between the lower and upper Fréchet–Hoeffding bounds.
Specifically, it is always true thatW ≤ C ≤ M, where

W(u) = max

(
n∑

i=1

ui − n + 1,0

)
and M(u) = min(u1, . . . , un).

WhileM is a copula in any dimension,W fails to be a distribution function whenn > 2. WhenM is the underlying
copula of a vectorX = (X1, . . . , Xn), the components ofX are said to becomonotonic. In the latter case, there is
a random variableU uniformly distributed on (0,1) such thatXi = F−1

i (U) for all i ∈ {1, . . . , n}. For more details
on comonotonicity in actuarial science and finance, seeDhaene et al. (2000, 2002).

Finally, defineΠ(u) = u1 · · · un to be the copula associated with multivariate independence. The components of
a random vectorXwith underlying copulaC are said to be inpositive lower orthant dependence(PLOD) if C ≥ Π

and inpositive upper orthant dependence(PUOD) whenCd ≤ Πd. If X is both PLOD and PUOD,X is said to be
positively orthant dependent (POD). In the bivariate case, these notions are equivalent, andX is said to bepositive
quadrant dependent(PQD). For a testing procedure that checks whether the components of a random vector are
PQD, seeScaillet (2005).

3. Bounds when the marginal distributions are known

Consider the risksX1, . . . , Xn, i.e.,n non-negative random variables with known continuous distribution func-
tionsF1, . . . , Fn, respectively. It is assumed throughout this section that the copulaCunderlying the distribution of
(X1, . . . , Xn) is unknown. It will be supposed, however, that partial information is available aboutC, namely that
there are copulasCL andCU such thatC ≥ CL andCd ≤ Cd

U.
Now denote byFS the distribution function ofS = X1 + · · · + Xn. In order to derive stochastic bounds on the

value-at-risk ofS, ann-variate analogue of a result due toMakarov (1981)and independently found byRüschendorf
(1982)will be recalled. The multivariate version presented herein can be found inCossette et al. (2002). Explicitly,
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one hasF (s) ≤ FS(s) ≤ F̄ (s), where

F (s) = sup
u1+···+un=s

CL{F1(u1), . . . , Fn(un)}

and

F̄ (s) = inf
u1+···+un=s

Cd
U{F1(u1), . . . , Fn(un)}.

Note in passing thatF andF̄ are themselves distribution functions.Frank et al. (1987)proved the best-possible
nature of these bounds.Williamson and Downs (1990)translated these results into bounds for the value-at-risk of
the sum of two risks using the duality principle. Then-dimensional formulation of this result is stated formally in
the next theorem. This is in fact a special case of Theorem 3.1 ofEmbrechts et al. (2003), where the value-at-risk of
a functionψ(x1, . . . , xn) of n-dependent risks was treated, applying the duality principle ofFrank and Schweizer
(1979). In all that follows, VaRα(S) stands for the value-at-risk, at levelα, of the sum ofn risks.

Theorem 3.1. LetX1, . . . , Xn be n risks with continuous marginal distribution functionsF1, . . . , Fn, respectively.
If the unknown copula C of(X1, . . . , Xn) is such thatC ≥ CL andCd ≤ Cd

U for some copulasCL andCU, then

VaRCU
(α) ≤ VaRα(S) ≤ VaRCL (α),

where

VaRCU
(α) = sup

Cd
U(u1,...,un)=α

n∑
i=1

F−1
i (ui) (1)

and

VaRCL (α) = inf
CL(u1,...,un)=α

n∑
i=1

F−1
i (ui). (2)

For fixed marginal distribution functionsF1, . . . , Fn, the dependence scenario leading to the worst possible value-
at-risk is not attained under comonotonicity of the risks. In other words, there exist dependence structures such that
VaRα(S) strictly exceeds the value-at-risk ofn comonotonic risks, which can be seen to be

F−1
1 (α) + · · · + F−1

n (α).

For this reason, value-at-risk is not a coherent risk measure. Theworst-casecopula is rather given by

Cα(u) =
{

max{CL(u), α}, u ∈ [α,1]n

M(u), otherwise.

This result was shown byFrank et al. (1987), and byRüschendorf (1982)whenn = 2 andCL = W . The copulas
Cα have recently been investigated byEmbrechts et al. (2005), who provide many interesting graphical interpre-
tations.
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Solutions to optimization problems like those of Eqs.(1) and (2)are commonly computed using the Lagrange
multiplier. For example, the solution of(2) is obtained by solving the system:

(F−1
i )′(ui) = λ

∂

∂ui
CL(u1, . . . , un), 1 ≤ i ≤ n andCL(u1, . . . , un) = α.

However, an approach that will prove easier to handle in the sequel is to reformulate(1) and (2)in an optimization
problem involving onlyn − 1 variables. For that purpose, letu\n = (u1, . . . , un−1) be the vector obtained by
removing thenth component ofu = (u1, . . . , un). Then, foru\n fixed, introduce the non-decreasing functions:

x �→ Cu\n (x) = C(u\n, x) and x �→ Cd
u\n (x) = Cd(u\n, x)

and denote byC−1
u\n , (Cd

u\n )−1 their respective generalized left-continuous inverse, as described inDefinition 2.1.
The following straightforward adaptation ofTheorem 3.1can now be stated.

Proposition 3.1. LetX1, . . . , Xn be n risks with continuous marginal distribution functionsF1, . . . , Fn, respec-
tively. If the unknown copula C of(X1, . . . , Xn) is such thatC ≥ CL andCd ≤ Cd

U for some copulasCL andCU,
then

VaRCU
(α) ≤ VaRα(S) ≤ VaRCL (α),

where

VaRCU
(α) = sup

Cd
U(u\n,0)≤α

[
n−1∑
i=1

F−1
i (ui) + F−1

n {(Cd
U,u\n )−1(α)}

]
(3)

and

VaRCL (α) = inf
CL(u\n,1)≥α

[
n−1∑
i=1

F−1
i (ui) + F−1

n {C−1
L,u\n (α)}

]
. (4)

In practical situations, the dependence structure of (X1, . . . , Xn) is often unknown. However, for any copula
C, the inequalitiesC(u) ≥ W(u) andCd(u) ≤ W̃d(u) = min(1, u1 + · · · + un) hold. Note thatW̃d = Wd only for
n = 2. Hence, in view ofProposition 3.1, it is always true that

VaRW̃ (α) ≤ VaRα(S) ≤ VaRW (α),

even ifW is not a copula and̃Wd is not the dual of a copula whenn > 2. In fact, only the property thatCL andCd
U are

increasing in each of their arguments was necessary to establishTheorem 3.1, and as a consequenceProposition 3.1.
These bounds can potentially be tightened whenever additional information guarantees that there exist copulas

C0 andC1 such thatC ≥ C0 > W andCd ≤ Cd
1 < W̃d. Indeed, since this implies that

C−1
0,u\n (α) < W−1

u\n (α) and (Cd
1,u\n )−1(α) > (W̃d

u\n )−1(α),

one concludes that

VaRC1
(α) ≥ VaRW̃ (α) and VaRC0(α) ≤ VaRW (α)
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from the fact thatF−1
n is non-decreasing and the optimisation regions are larger. In the bivariate case, the knowledge

thatC ≥ C0 can lead to a simultaneous improvement of VaRW̃ (α) = VaRW (α) andVaRW (α), since it implies that
Cd ≤ Cd

0.
Now in order to apply the arguments in the above discussion, assume thatX1, . . . , Xn are positively lower orthant

dependent (PLOD), i.e.,C ≥ Π. In this case, the possibly improved upper bound isVaRΠ (α). In other contexts,
it can be supposed that the risks are in positive upper orthant dependence (PUOD), which means thatCd ≤ Πd.
This can lead to a better lower bound, namely VaRΠ (α). However, these assumptions of PLOD and PUOD risks are
rather imprudent in VaR-based risk management.

Remark3.1. Interestingly, the bounds(3) and (4)of Proposition 3.1cannot be improved even if available information
tells thatC is bounded above. For example, no improvement is achieved even if it is known that the copulaC of
(X1, . . . , Xn) satisfiesC ≤ Π.

Unfortunately, explicit solutions to(3) or (4)are not always available. One then has to rely on numerical solutions.
However, it will be seen that easily computable expressions can arise by making assumptions about the densities of
the risks, which ensure that the function to be optimized is convex.

The next proposition generalizes previous findings made byEmbrechts et al. (2000), whereVaRW (α) was
computed for the sum of two identically distributed Pareto and Gamma risksX1 andX2. The result presented here
holds true whenever the common densityf of n risks is non-increasing above a certain threshold and applies to any
exchangeable copulaCL such thatC ≥ CL. Before stating it, assume thatf is differentiable.

Proposition 3.2. LetX1, . . . , Xn be n risks with common distribution function F and unknown copula C, and
suppose Assumptions A1 and A2 below hold true.

A1. There existsx� ∈ R such thatf (x) = dF (x)/dx is non-increasing for allx ≥ x�.
A2. There is an exchangeable copulaCL such thatC ≥ CL and

∂2

∂ui∂uj
C−1

L,u\n ≥ 0 for any 1 ≤ i, j ≤ n − 1.

Then, for α ≥ F (x�), one has thatVaRα(S) ≤ VaRCL (α), where

VaRCL (α) = nF−1{δ−1
CL

(α)}, (5)

with δCL (t) = CL(t, . . . , t) being the diagonal section ofCL.

Proof. Definesα(u\n) = C−1
L,u\n (α) andG(u) = F−1(u). From Eq.(4) of Proposition 3.1, one can write

VaRCL (α) = inf
CL(u\n,1)≥α

g(u\n),

where

g(u\n) =
n−1∑
i=1

G(ui) + G ◦ sα(u\n).
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By Assumption A1, one deduces thatG′′(u) ≥ 0 for allu ≥ F (x�), and in particular forα ≤ u ≤ 1 sinceα ≥ F (x�).
Furthermore,G′(u) = {f ◦ F−1(u)}−1 ≥ 0 for all u. Next, note that

∂2

∂ui∂uj
g(u\n) =

{
hij(u\n) + G′′(ui), i = j,

hij(u\n), i �= j,

where

hij(u
\n) = G′′ ◦ sα(u\n)s(i)

α (u\n)s(j)
α (u\n) + G′ ◦ sα(u\n)s(ij)

α (u\n),

s
(i)
α = ∂sα/∂ui ands(ij)

α = ∂2sα/∂ui∂uj. By Assumption A2,s(ij)
α ≥ 0. This, coupled with the fact that

s(i)
α (u\n) = − C

(i)
L {u\n, sα(u\n)}

C
(n)
L {u\n, sα(u\n)}

≤ 0,

whereC(i)
L is the first-order partial derivative ofCL with respect to itsith component, allows one to conclude that

g is convex on [α,1]n−1. A possible minimum is then attained where the first order derivatives ofg vanish, i.e., at
the pointũ\n such that

G′(ũi)
s
(i)
α (ũ\n)

+ G′ ◦ sα(ũ\n) = 0, 1 ≤ i ≤ n − 1. (6)

A natural candidate is ˜u\n, which satisfies ˜ui = sα(ũ\n) for all i ∈ {1, . . . , n − 1}. This would imply that ˜u1 =
· · · = ũn−1 = ũ and henceforth ˜u would be such thatCL(ũ, . . . , ũ) = δCL (ũ) = α, or equivalently ˜u = δ−1

CL
(α). This

solution satisfies the equations in(6) since, using the exchangeability ofCL,

s(i)
α (ũ\n) = − C

(i)
L {ũ\n, sα(ũ\n)}

C
(n)
L {ũ\n, sα(ũ\n)}

= − C
(i)
L (ũ, . . . , ũ)

C
(n)
L (ũ, . . . , ũ)

= −1.

Finally, this solution belongs to the optimization region since

CL(ũ\n,1) ≥ CL(ũ\n, ũ) = δCL (ũ) = α. �

Remark 3.2. For a distribution functionF whose associated density satisfies Assumption A1, one obtains easily
that for allα ≥ F (x�):

VaRW (α) = nF−1
(
α + n − 1

n

)
and VaRΠ (α) = nF−1(α1/n),

since Assumption A2 is met for bothWandΠ. Interestingly, it is clear thatVaRW (α) exceeds the value-at-risk of
the sum ofn comonotonic risks, namelynF−1(α).

Assumption A1 is fulfilled for many important models in finance. In fact, as long as A2 holds true, the conclusion
of Proposition 3.2applies for allα ≥ 0 when the density is non-increasing on its entire domain, as is the case with the
exponential and Pareto models. Even for unimodal densities, the range ofα where the result holds true can be wide
enough for applications. As an illustration, letFa,b be the distribution function of a gamma random variable with
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Table 1
Values ofFa,1(a − 1), whereFa,1 is the distribution function of a Gamma(a,1) distribution

a α

1 0.000
1.5 0.199
2 0.264
3 0.323
4 0.353
5 0.371

10 0.413
∞ 0.500

parametersaandb. The associated density is known to be non-increasing for allx ≥ x� = (a − 1)b. Table 1provides
some values ofFa,b(x�) = Fa,1(a − 1), i.e., the minimum values ofα for which the upper bound ofProposition 3.2
is still valid.

Here, the conditionα ≥ Fa,b(x�) that appears inProposition 3.2is not restrictive in practice since one is usually
interested in the computation of the value-at-risk at large values ofα. Note that in the special case of the exponential
distribution, i.e., whena = 1, there is no restriction onα since the associated density is non-increasing everywhere.

Assumption A2 is satisfied as well for many copulas of interest, includingW andΠ. More generally, one can
show that A2 is true for any Archimedean copula, i.e., for dependence models of the form

C(u1, . . . , un) = φ−1{φ(u1) + · · · + φ(un)},

whereφ : (0,1] → [0,∞) is a bijective generator such that

(−1)i
di

dti
φ−1(t) > 0, 1 ≤ i ≤ n andφ(1) = 0.

Many widely used multivariate families fall into this category, including the Clayton–Oakes models and the extreme-
value Gumbel copulas. For more details on Archimedean copulas, seeGenest and MacKay (1986)or Chapter 4 of
the monograph byNelsen (1999).

Now an explicit expression for the lower bound to be found inTheorem 3.1will be given when no information
about the dependence structure ofn risks is available. In that case, one deduces from Eq.(1) that VaRα(S) is bounded
below by

VaRW̃ (α) = sup
u1+···+un=α

n∑
i=1

F−1
i (ui), (7)

since it is always true thatCd ≤ W̃d = min(1, u1 + · · · + un). If the densities associated to the risks are non-
increasing on a given range, then the function to be maximized will be convex. This is a key requirement in the
proof of the next result, where it is assumed that for alli ∈ {1, . . . , n}, the densityfi of Xi is differentiable.

Proposition 3.3. Suppose that for eachi ∈ {1, . . . , n}, there exist a numberx�i such thatfi(x) is non-increasing
for all x ≤ x�i . Then, for α ≤ min{F1(x�1), . . . , Fn(x�n)}, one has

VaRW̃ (α) = max
1≤i≤n


F−1

i (α) +
∑

1≤j �=i≤n

F−1
j (0)


 . (8)
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Proof. The proof will proceed by induction. First note that by assumption,−f ′
i ◦ F−1

i (u) ≥ 0 for all u ≤ Fi(x�i ),
so that for all 0≤ u ≤ α ≤ Fi(x�i ):

(F−1
i (u))′′ = −f ′

i ◦ F−1
i (u)

{fi ◦ F−1
i (u)}3

≥ 0, 1 ≤ i ≤ n.

Forn = 2, one deduces from Eq.(7) that

VaRW̃ (α) = sup
0≤u≤α

{F−1
1 (u) + F−1

2 (α − u)} = max{F−1
1 (α) + F−1

2 (0), F−1
1 (0) + F−1

2 (α)},

where the convexity ofF−1
1 andF−1

2 was used.
Now suppose Eq.(8) is true for a givenn ≥ 2 and letu1, . . . , un+1 be any non-negative numbers that satisfy

u1 + · · · + un+1 = α. By the induction hypothesis:

n∑
i=1

F−1
i (ui) ≤ max

1≤i≤n


F−1

i (α − un+1) +
∑

1≤i�=j≤n

F−1
j (0)


 ,

becauseu1 + · · · + un = α − un+1. Hence,

n+1∑
i=1

F−1
i (ui) ≤ max

1≤i≤n


F−1

i (α − un+1) + F−1
n+1(un+1) +

∑
1≤j �=i≤n

F−1
j (0)


 ,

and since the result holds forn = 2,

F−1
i (α − un+1) + F−1

n+1(un+1) ≤ max{F−1
i (α) + F−1

n+1(0), F−1
n+1(α) + F−1

i (0)}.

It follows that

n+1∑
i=1

F−1
i (ui) ≤ max

1≤i≤n


F−1

i (α) +
∑

1≤j �=i≤n+1

F−1
j (0)


 ,

and therefore

sup
u1+···+un+1=α

n+1∑
i=1

F−1
i (ui) = max

1≤i≤n


F−1

i (α) +
∑

1≤j �=i≤n+1

F−1
j (0)


 .

Consequently,(8) is true forn + 1. �

Remark 3.3. It is not possible to obtain an analogous version of the last proposition for any copulaCU such
thatCd ≤ Cd

U, since the function to be maximized will no longer be convex. However, a result similar to that of
Proposition 3.2is possible for the lower bound when it is supposed that the common density ofn risks is non-
decreasing for allx ≤ x�. The gamma model, among others, satisfies this requirement. Under the assumption that
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there exists an exchangeable copulaCU such thatCd ≤ Cd
U and

∂2

∂ui∂uj
(Cd

U,u\n )−1 ≤ 0 for any 1≤ i, j ≤ n − 1,

the function to be maximized in Eq.(3) of Proposition 3.1is concave. It is hence established from this fact, using
arguments identical to that of the proof ofProposition 3.2, that the maximum is attained at ˜ui = (δd

CU
)−1(α),1 ≤

i ≤ n, whereδd
CU

(t) = Cd
U(t, . . . , t). As a consequence, forα ≤ F (x�):

VaRCU
(α) = nF−1{δd

C−1
U

(α)}. (9)

This result is of limited application, however, since it holds true only for small values ofα.

As an illustration of the latter remark, letF by a distribution function whose associated densityf (x) is non-
decreasing for allx ≤ x�. One can see that for allα ≤ F (x�):

VaRW̃ (α) = nF−1
(α
n

)
and VaRΠ (α) = nF−1{1 − (1 − α)1/n}.

4. Bounds when the marginal distributions are unknown

In this section, lower and upper bounds for VaRα(S) are proposed for cases where only the first two moments of
X1, . . . , Xn are known. The main result will make use of the univariate extremal distributions given byKaas and
Goovaerts (1986)when only the first two moments of a random variable are known. Specifically, letX be a random
variable with unknown distribution functionF and known moments E(X) = µX > 0 and var(X) = σ2

X > 0. These
authors showed thatFµX,σX

(x) ≤ F (x) ≤ F̄µX,σX (x), where

FµX,σX
(x) =




0, 0 ≤ x ≤ µX,

x − µX

x
, µX < x ≤ σ2

X + µ2
X

µX

,

(x − µX)2

(x − µX)2 + σ2
X

, x >
σ2
X + µ2

X

µX

and

F̄µX,σX (x) =




σ2
X

σ2
X + (x − µX)2

, 0 ≤ x ≤ µX,

1, x > µX.

The following proposition translates these bounds in terms of the value-at-risk of a single random variableX.
To achieve this, it suffices to invert the previous extremal distributions. Before stating it, define on [0,1] the strictly
increasing functionq(u) = √

u/(1 − u) and let

ga,b(u) = {a − bq(1 − u)}1
(
u ≥ b2

a2 + b2

)
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and

ha,b(u) = a + aq2(u)1
(
u ≤ b2

a2 + b2

)
+ bq(u)1

(
u >

b2

a2 + b2

)
,

where1(·) stands for the indicator function of a set.

Proposition 4.1. If X is a random variable with meanµX and varianceσ2
X,

VaRµX,σX
(α) ≤ VaRα(X) ≤ VaRµX,σX (α),

where

VaRµX,σX
(α) = F

−1
µX,σX

(α) = gµX,σX (α)

and

VaRµX,σX (α) = F−1
µX,σX

(α) = hµX,σX (α).

Now in order to derive bounds for the value-at-risk ofS = X1 + · · · + Xn, an approach will be used which is
similar to that explored byGenest et al. (2002)in a stop-loss premium context. Specifically, letX1, . . . , Xn ben
risks such that E(Xi) = µi > 0 and var(Xi) = σ2

i > 0 are known. Hence, ifRstands for their associated correlation
matrix, the first two moments of the single random variableSare expressed as

µ = E(S) = µ1 + · · · + µn and σ2(R) = var(S) =
n∑

i=1

σ2
i + 2

∑
i<j

σiσjRij.

FromProposition 4.1, possible bounds for VaRα(S) are then

VaRµ,σ(R)(α) ≤ VaRα(S) ≤ VaRµ,σ(R)(α).

Since these two extremal value-at-risk depend on the unknown elements ofR, expressions for the lower and the
upper bounds that are free ofR are obtained by minimizing VaRµ,σ(R) and maximizingVaRµ,σ(R) with respect to
Rij ∈ [−1,1],1 ≤ i �= j ≤ n. These optimization problems are easily handled using the fact thatσ2(R) andt(R) =
σ2(R)/(σ2(R) + µ2) are strictly increasing on each of their arguments. It follows that VaRµ,σ(R) andVaRµ,σ(R) are
respectively decreasing and increasing functions ofRij, in the strict sense, so that both solutions are achieved when
Rij = 1 for all i, j ∈ {1, . . . , n}. As a consequence, the resulting bounds depend only onµ = µ1 + · · · + µn and
σ = σ1 + · · · + σn. These new findings are summarized in the proposition below.

Proposition 4.2. LetX1, . . . , Xn be n risks with meansµ1, . . . , µn and variancesσ2
1, . . . , σ

2
n, respectively. Then,

VaRµ,σ(α) ≤ VaRα(S) ≤ VaRµ,σ(α), where

VaRµ,σ(α) = gµ,σ(α) and VaRµ,σ(α) = hµ,σ(α), (10)

withµ = µ1 + · · · + µn andσ = σ1 + · · · + σn.

Remark 4.1. Since the optimization consists in taking the maximum values ofRij in the interval [−1,1], the bounds
in Proposition 4.2can be improved whenever additional information guarantees thatRij ≤ R�

ij for some pair (i, j)
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such that−1 ≤ R�
ij < 1, using the fact thatσ(R) ≤ σ(R�). One need only replaceσ by σ(R�) in order to improve

the bounds in(10).

Remark 4.2. An alternative method consists in bounding VaRα(S) viaProposition 3.1by replacingF−1
i ,1 ≤ i ≤ n,

by VaRµi,σi
in Eq. (3) and byVaRµi,σi in Eq. (4). If the unknown copulaC of (X1, . . . , Xn) is such thatC ≥ CL

andCd ≤ Cd
U for some copulasCL andCU, then

VaR�
CU

(α) ≤ VaRα(S) ≤ VaR
�
CL

(α),

where

VaR�
CU

(α) = sup
Cd

U(u\n,0)≤α

[
n−1∑
i=1

gµi,σi (ui) + gµn,σn{(Cd
L,u\n )−1(α)}

]

and

VaR
�
CL

(α) = inf
CL(u\n,1)≥α

[
n−1∑
i=1

hµi,σi (ui) + hµn,σn{C−1
L,u\n (α)}

]
.

The next proposition states that the upper bound constructed from the correlation-based methodology, namely
VaRµ,σ , is uniformly better than the upper bound that arises from the copula-based approach described in the
remark above, at least when the coefficients of variation of two risksX1 andX2 are equal. An exhaustive numerical
investigation suggests thatProposition 4.3could probably be extended to the general case. Before stating it, put

ti = σ2
i

µ2
i + σ2

i

, i = 1,2 and t = (σ1 + σ2)2

(µ1 + µ2)2 + (σ1 + σ2)2
.

Proposition 4.3. LetX1, X2 be two risks withµ1, µ2, σ1, σ2 known and such thatµ1/σ1 = µ2/σ2. If CL is any
symmetric copula such thatC ≥ CL, then for all0 ≤ α ≤ 1,

VaRµ,σ(α) ≤ VaR
�
CL

(α).

Proof. By the assumptionµ1/σ1 = µ2/σ2, one has thatt1 = t2 = t. Furthermore, sinceC−1
L,u is a non-increasing

function ofu, one has thatC−1
L,u(α) ≥ C−1

L,1(α) = α for any 0≤ u ≤ 1. If α ≤ t,

VaR
�
CL

(α) = µ + min[ inf
α≤u≤t

{µ1q
2(u) + µ2q

2(C−1
L,u(α))}, inf

t<u≤1
{σ1q(u) + σ2q(C−1

L,u(α))}]

≥ µ + min[µ1q
2(α) + µ2q

2(α), σ1q(α) + σ2q(α)]

= µ + µ1q
2(α) + µ2q

2(α) = µ + µq2(α) = VaRµ,σ(α),

sinceσiq(α) = µiq(t)q(α) ≥ µiq
2(α), while if t < α ≤ 1, one has that

VaR
�
CL

(α) = µ + inf
α≤u≤1

{σ1q(u) + σ2q(C−1
L,u(α))} ≥ µ + σ1q(α) + σ2q(α) = µ + σq(α) = VaRµ,σ(α). �

For the lower bounds derived from the correlation-based and the copula methodologies, no clear answer exists
as to which approach is preferable. Indeed, it will be seen that whenn = 2, the lower bound that arises from the
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copula-based approach is the best for 0≤ α ≤ t2, while the one that stems from the correlation approach is better
for t2 < α ≤ 1. This suggests an improved lower bound for the value-at-risk for the sum of two risks by combining
VaRµ,σ and VaR�CL

. This is the object of the next proposition.

Proposition 4.4. If the first twomomentsµ1, µ2, σ1, σ2 ofX1, X2 are known, and ifCU is a symmetric copula such
thatCd ≤ Cd

U, a lower bound forVaRα(S) that is better thanVaRµ,σ(α) andVaR�
CU

(α) and that does not depend
onCU is

VaR��
µ1,µ2,σ1,σ2

(α) = gµ1,σ1(α) + gµ2,σ2(α). (11)

Proof. Assume without any loss of generality thatt1 ≤ t ≤ t2 and note thatµi − σiq(1 − α) ≥ 0 if and only if
α ≥ ti. It will be shown that VaR�CU

(α) ≥ VaRµ,σ(α) for α ≤ t2 and VaRµ,σ(α) ≤ VaR�
CU

(α) for α > t2.
Forα ≤ t2, it is easily established that

gµ1,σ1(α) = gµ,σ(α) + {µ1 − σ1q(1 − α)}1(t1 ≤ α ≤ t2) ≥ gµ,σ(α).

Hence, since (Cd
U,u)−1 is decreasing as a function ofu, one has for all 0≤ u ≤ α that (Cd

U,u)−1(α) ≤ (Cd
U,0)−1(α) =

α ≤ t2, so that

VaR�
CU

(α) = sup
0≤u≤α

[gµ1,σ1(u) + gµ2,σ2{(Cd
U,u)−1(α)}]

= sup
0≤u≤α

gµ1,σ1(u) + 0 = gµ1,σ1(α) ≥ gµ,σ(α) = VaRµ,σ(α).

Next, whenα > t2, one has that VaRµ,σ(α) = gµ1,σ1(α) + gµ2,σ2(α), and then

VaR�
CU

(α) = sup
0≤u≤α

[gµ1,σ1(u) + gµ2,σ2{(Cd
U,u)−1(α)}] ≤ sup

0≤u≤α

gµ1,σ1(u) + sup
0≤u≤α

gµ2,σ2{(Cd
U,u)−1(α)}

= gµ1,σ1(α) + gµ2,σ2(α) = VaRµ,σ(α).

As a consequence, a better bound is given by

VaR��
µ1,µ2,σ1,σ2

(α) = gµ1,σ1(α)1(α ≤ t2) + {gµ1,σ1(α) + gµ2,σ2(α)}1(α > t2) = gµ1,σ1(α) + gµ2,σ2(α). �

5. Examples

In this section, some of the bounds established in Sections3 and 4will be computed in the special cases when
the risks are distributed as exponential and Pareto random variables. Since the densities associated to these laws are
non-increasing everywhere on their domain, the results ofPropositions 3.2 and 3.3will be valid for all 0 ≤ α ≤ 1.
The computations herein can be seen as extending Examples 1–2 inDenuit et al. (1999)in a value-at-risk context.

5.1. Exponential risks

SupposeX1, . . . , Xn are distributed as shifted exponential variables, so that

F−1
i (u) = ξi − θi log(1− u), θi > 0, ξi ≥ 0.
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When no information is available about the dependence structure of (X1, . . . , Xn), one deduces fromTheorem 3.1
that

VaRα(S) ≤ VaRW (α) =
n∑

i=1

ξi + inf
u1+···+un=α+n−1

n∑
i=1

−θi log(1− ui).

Since the function to be minimized is convex, the problem can be solved using the Lagrange multiplier method,
which gives

θi

1 − ui
= λ, 1 ≤ i ≤ n, and

n∑
i=1

ui = α + n − 1.

The solution to this system of equations isui = 1 − (1 − α)θi(θ1 + · · · + θn)−1, so that

VaRW (α) =
n∑

i=1

[
ξi − θi log

{
(1 − α)

θi

θ1 + · · · + θn

}]
.

WhenF1 = · · · = Fn = F , that is forξ1 = · · · = ξn = ξ andθ1 = · · · = θn = θ, the formula above reduces to

VaRW (α) = nξ − nθ log

(
1 − α + n − 1

n

)
= nF−1

(
α + n − 1

n

)
,

as can be deduced fromProposition 3.2.
This upper bound can potentially be improved when it is known thatX1, . . . , Xn are in positive lower or-

thant dependence (PLOD). While no simple solution seems possible forn > 2, one can conclude from Eq.(4) of
Proposition 3.1that an upper bound for the value-at-risk of the sum of two exponential risks is

VaRΠ (α) = ξ1 + ξ2 + inf
α≤u≤1

s(u), wheres(u) = −θ1 log(1− u) − θ2 log
(

1 − α

u

)
.

From the fact thatθ1 > 0, θ2 > 0, α ≥ 0 andu ≥ α/2, it follows thats is a convex function since

s′′(u) = θ1

(1 − u)2
+ θ2α

u2(u − α)2
(2u − α) ≥ 0.

Therefore, a possible minimum fors is attained foru� such thats′(u�) = 0. A straightforward computation gives
the unique solution:

u� = α(θ1 − θ2) +
√

α2(θ1 − θ2)2 + 4αθ1θ2

2θ1
.

For equal distributions, it is easily seen thatu� = √
α = δ−1

Π (α), in accordance withProposition 3.2.
Finally, one deduces fromProposition 3.3that

VaRα(S) ≥ VaRW̃ (α) =
n∑

i=1

ξi − log(1− α) max
1≤i≤n

θi.

Unfortunately, no simple solution seems available when additional information ensures, e.g., thatCd ≤ Πd.
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Now suppose only that the first two moments ofX1, . . . , Xn are known. For the present context of exponential
risks, one has

µi = θi + ξi and σi = θi, 1 ≤ i ≤ n.

Lower and upper bounds derived fromProposition 4.2are then given by

VaRξ,θ(α) = gθ+ξ,θ(α) and VaRξ,θ(α) = hθ+ξ,θ(α),

whereθ = θ1 + · · · + θn andξ = ξ1 + · · · + ξn. In the special case of two exponential risks,Proposition 4.4gives
the improved lower bound:

VaR��
ξ1,ξ2,θ1,θ2

(α) = gθ1+ξ1,θ1(α) + gθ2+ξ2,θ2(α).

In Fig. 1, the curves defined by VaR��ξ1,ξ2,θ1,θ2
,VaRW̃ ,VaRW and VaRξ,λ are displayed for the case of two

exponential risks with parameter valuesξ1 = ξ2 = 0 andθ1 = θ2 = 1. These bounds are compared to the value-at-
risk of S = X1 + X2 when the risks are supposed to be comonotonic.Table 2reports some numerical values for
popular levels ofα. As expected, the bounds for the case of known marginal distributions are much closer to the
exact value-at-risk compared to the bounds when only the first two moments are known. Moreover, for large values
of α, the upper boundVaRW (α) gives a rather good approximation to VaRα(S) compared to the performance of
VaRW̃ (α). In fact, one has that

lim
α→1

VaRW (α)

VaRα(S)
= 1 and lim

α→1

VaRW̃ (α)

VaRα(S)
= 1/2.

Fig. 1. Bounds on the value-at-risk ofS = X1 + X2 when only the first two moments are known (broken lines) and when the marginal distributions
are known (dots), compared to the exact value-at-risk ofS (solid lines) whenX1 andX2 are comonotonic.X1 andX2 are exponential with
parametersξ1 = ξ2 = 0 andθ1 = θ2 = 1.
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Table 2
Values of VaR��

ξ1,ξ2,θ1,θ2
,VaRW̃ ,VaRα,VaRW andVaRξ,λ for selected levels ofα

α VaR��
ξ1,ξ2,θ1,θ2

(α) VaRW (α) VaRα(S) VaRW (α) VaRµ,σ (α)

0.900 1.33 2.30 4.61 5.99 8.00
0.950 1.54 3.00 5.99 7.38 10.72
0.975 1.68 3.69 7.38 8.76 14.49
0.990 1.80 4.61 9.21 10.60 21.90
0.995 1.86 5.30 10.60 11.98 30.21

5.2. Pareto risks

Consider two risksX1 andX2 distributed as Pareto random variables with parametersγi > 0 andβi > 2. In
that case:

F−1
i (u) = γi{(1 − u)−1/βi − 1}.

From Eq.(4) of Proposition 3.1, one observes thatVaRW (α) = inf α≤u≤1 h(u), where

h(u) = γ1{(1 − u)−1/β1 − 1} + γ2{(u − α)−1/β2 − 1}.
Sinceh′′(u) ≥ 0 for all u ∈ [α,1], a possible minimum value is the real numberu� which solvesh′(u�) = 0, or
equivalently

γ1

β1
(1 − u�)−1−1/β1 = γ2

β2
(u� − α)−1−1/β2.

A numerical routine is needed to solve this problem in general. However, an explicit solution arises whenβ1 =
β2 = β. In that case,u� = (ακ + 1)/(κ + 1), whereκ = (γ1/γ2)β/(β+1), so that

VaRW (α) =
(
κ + 1

1 − α

)1/β ( γ1

κ1/β + γ2

)
− γ1 − γ2.

An improved upper bound when (X1, X2) are known to be PQD can be computed from Eq.(4). If β1 = β2 = β,
it can be shown that

VaRΠ (α) = (γ1 + κ1/βγ2){(1 − u�)−1/β − 1},
where

u� = 1 − κ +
√

(1 − κ)2 + 4ακ

2
.

For equal distributions, in which caseκ = 1, the above formulae reduce to

VaRW (α) = 2γ

{(
1 − α + 1

2

)−1/β

− 1

}
= 2F−1

(
α + 1

2

)

and

VaRΠ (α) = 2γ{(1 − √
α)−1/β − 1} = 2F−1 (√α

)
,

in accordance with the conclusion ofProposition 3.2.
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For the lower bound, one has from(8) that

VaRW̃ (α) = max[γ1{(1 − α)−1/β1 − 1}, γ2{(1 − α)−1/β2 − 1}].

Finally, lower and upper bounds for the value-at-risk ofS = X1 + X2 are obtained fromPropositions 4.2 and 4.4
when the only available information is about the first two moments ofXi, namely

µi = γi

βi − 1
and σ2

i = γ2
i βi

(βi − 1)2(βi − 2)
, i = 1,2.
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